Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks

The SPARC tokamak project, currently in engineering design, aims to achieve breakeven and burning plasma conditions in a compact device, thanks to new developments in high-temperature superconductor technology. With a magnetic field of 12.2 T on axis and 8.7 MA of plasma current, SPARC is predicted to produce 140 MW of fusion power with a plasma gain of Q ≈ 11, providing ample margin with respect to its mission of Q > 2. All tokamak systems are being designed to produce this landmark plasma discharge, thus enabling the study of burning plasma physics and tokamak operations in reactor relevant conditions to pave the way for the design and construction of a compact, high-field fusion power plant. Construction of SPARC is planned to begin by mid-2021.

[1]  J. Rice,et al.  Gyrokinetic simulation of turbulence and transport in the SPARC tokamak , 2021, Physics of Plasmas.

[2]  C. Senatore,et al.  Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion , 2021, Scientific Reports.

[3]  R. Badcock,et al.  Fiber optic quench detection for large-scale HTS magnets demonstrated on VIPER cable during high-fidelity testing at the SULTAN facility , 2021 .

[4]  T. Tala,et al.  Dimensionless parameter scaling of intrinsic torque in C-Mod enhanced confinement plasmas , 2020 .

[5]  C. Kuranz,et al.  A Community Plan for Fusion Energy and Discovery Plasma Sciences , 2020, 2011.04806.

[6]  Christopher J. Lammi,et al.  VIPER: an industrially scalable high-current high-temperature superconductor cable , 2020, Superconductor Science and Technology.

[7]  P. Snyder,et al.  Overview of the SPARC tokamak , 2020, Journal of Plasma Physics.

[8]  P. Snyder,et al.  Projections of H-mode access and edge pedestal in the SPARC tokamak , 2020, Journal of Plasma Physics.

[9]  S. Wukitch,et al.  Physics basis for the ICRF system of the SPARC tokamak , 2020, Journal of Plasma Physics.

[10]  M. Greenwald,et al.  Divertor heat flux challenge and mitigation in SPARC , 2020, Journal of Plasma Physics.

[11]  M. Greenwald,et al.  Predictions of core plasma performance for the SPARC tokamak , 2020, Journal of Plasma Physics.

[12]  R. A. Tinguely,et al.  MHD stability and disruptions in the SPARC tokamak , 2020, Journal of Plasma Physics.

[13]  G. Kramer,et al.  Fast-ion physics in SPARC , 2020, Journal of Plasma Physics.

[14]  R. A. Tinguely,et al.  Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks , 2020, Nuclear Fusion.

[15]  O. Embreus,et al.  Effect of plasma elongation on current dynamics during tokamak disruptions , 2019, Journal of Plasma Physics.

[16]  T. Kurki-Suonio,et al.  High-performance orbit-following code ASCOT5 for Monte Carlo simulations in fusion plasmas , 2019, 1908.02482.

[17]  N. W. Eidietis,et al.  Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST , 2019, Nuclear Fusion.

[18]  Kevin Montes,et al.  A real-time machine learning-based disruption predictor in DIII-D , 2019, Nuclear Fusion.

[19]  Alexey Svyatkovskiy,et al.  Predicting disruptive instabilities in controlled fusion plasmas through deep learning , 2019, Nature.

[20]  F. Jenko,et al.  Electromagnetic turbulence suppression by energetic particle driven modes , 2018, Nuclear Fusion.

[21]  R. Mumgaard,et al.  SPARC and the high-field path , 2018 .

[22]  E. Viezzer Access and sustainment of naturally ELM-free and small-ELM regimes , 2018, Nuclear Fusion.

[23]  J. Hecla,et al.  Conceptual design study for heat exhaust management in the ARC fusion pilot plant , 2017, Fusion Engineering and Design.

[24]  W. Suttrop,et al.  ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade , 2017 .

[25]  G. M. Staebler,et al.  A model of the saturation of coupled electron and ion scale gyrokinetic turbulence , 2017 .

[26]  E. A. Belli,et al.  A high-accuracy Eulerian gyrokinetic solver for collisional plasmas , 2016, J. Comput. Phys..

[27]  J. Contributors,et al.  Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER , 2016 .

[28]  M. Greenwald,et al.  Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path , 2016 .

[29]  Martine Baelmans,et al.  The new SOLPS-ITER code package , 2015 .

[30]  Steven J. Zinkle,et al.  FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions , 2015 .

[31]  J. Lister,et al.  The ITPA disruption database , 2015 .

[32]  B. Duval,et al.  Threshold power for the transition into H-mode for H, D, and He plasmas in TCV , 2015 .

[33]  P. Bonoli,et al.  ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets , 2014, 1409.3540.

[34]  L. Barrera Orte,et al.  Experimental evidence for the key role of the ion heat channel in the physics of the L–H transition , 2014 .

[35]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[36]  R. Budny,et al.  A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .

[37]  Clarence W. Rowley,et al.  Plasma modelling results and shape control improvements for NSTX , 2011 .

[38]  H. R. Wilson,et al.  A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model , 2011 .

[39]  S. Miyamoto A linear response model of the vertical electromagnetic force on a vessel applicable to ITER and future tokamaks , 2011 .

[40]  A. Boozer Two beneficial non-axisymmetric perturbations to tokamaks , 2011 .

[41]  Naoto Tsujii,et al.  I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod , 2010 .

[42]  Tomonori Takizuka,et al.  Power requirement for accessing the H-mode in ITER , 2008 .

[43]  M E Fenstermacher,et al.  Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. , 2004, Physical review letters.

[44]  L. Horton,et al.  ELM pace making and mitigation by pellet injection in ASDEX Upgrade , 2004 .

[45]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[46]  L. Lao,et al.  Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak , 2003 .

[47]  C. Gormezano,et al.  The scientific success of JET , 2001 .

[48]  Plasma Chapter 3: MHD stability, operational limits and disruptions , 1999 .

[49]  J. Milovich,et al.  A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .

[50]  O. J. W. F. Kardaun,et al.  Scalings for tokamak energy confinement , 1990, ArXiv.

[51]  L. Bromberg,et al.  Tokamak reactor concepts using high temperature, high-field superconductors , 1988 .

[52]  James W. French,et al.  Construction of the Tokamak Fusion Test Reactor , 1983 .

[53]  Wayne A Houlberg,et al.  Contour analysis of fusion reactor plasma performance , 1982 .

[54]  M. Greenwald,et al.  Simulation of the SPARC plasma boundary with the UEDGE code , 2021, Nuclear Fusion.

[55]  G Wang,et al.  Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak , 2004 .

[56]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[57]  ITER Physics Basis Editors,et al.  Chapter 2: Plasma confinement and transport , 1999 .

[58]  M. Brambilla Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .