Conserved quantities, continuation and compactly supported solutions of some shallow water models

A proof that strong solutions of the Dullin–Gottwald–Holm equation vanishing on an open set of the (1 + 1) space-time are identically zero is presented. In order to do it, we use a geometrical approach based on the conserved quantities of the equation to prove a unique continuation result for its solutions. We show that this idea can be applied to a large class of equations of the Camassa–Holm type.

[1]  Igor Leite Freire Geometrical demonstration for persistence properties of a bi-Hamiltonian shallow water system , 2020, Journal of Mathematical Physics.

[2]  I. Sibgatullin well-posedness , 2020 .

[3]  Priscila Leal da Silva Global well-posedness and continuation of solutions for a generalized $0$-equation in spaces of analytic functions , 2020 .

[4]  Igor Leite Freire,et al.  Existence, continuation and dynamics of solutions for the generalized 0-Holm-Staley equation , 2020 .

[5]  Igor Leite Freire,et al.  A geometrical demonstration for continuation of solutions of the generalised BBM equation , 2020, Monatshefte für Mathematik.

[6]  G. Ponce,et al.  Unique continuation properties for solutions to the Camassa-Holm equation and related models , 2020 .

[7]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[8]  Yidong Li,et al.  Infinite Propagation Speed for a Two-Component Camassa-Holm Equation , 2019, 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT).

[9]  Igor Leite Freire,et al.  Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa–Holm equation , 2019, Studies in Applied Mathematics.

[10]  Long Wei,et al.  Symmetry analysis, conserved quantities and applications to a dissipative DGH equation , 2019, Journal of Differential Equations.

[11]  Igor Leite Freire,et al.  Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation , 2019, Journal of Differential Equations.

[12]  P. L. da Silva Classification of bounded travelling wave solutions for the Dullin–Gottwald–Holm equation , 2018, Journal of Mathematical Analysis and Applications.

[13]  Jianhua Huang,et al.  Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited , 2015 .

[14]  D. Henry,et al.  Two-component equations modelling water waves with constant vorticity , 2014, 1406.1645.

[15]  Blazej M. Szablikowski,et al.  Novikov Algebras and a Classification of Multicomponent Camassa–Holm Equations , 2013, 1309.3188.

[16]  E. Novruzov Blow-up phenomena for the weakly dissipative Dullin–Gottwald–Holm equation , 2013 .

[17]  J. Lenells,et al.  On the weakly dissipative Camassa–Holm, Degasperis–Procesi, and Novikov equations , 2012, 1207.0968.

[18]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[19]  R. I. Ivanov,et al.  Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples , 2010, 1009.5368.

[20]  Vladimir S. Novikov,et al.  Generalizations of the Camassa–Holm equation , 2009 .

[21]  D. Henry Infinite propagation speed for a two component Camassa-Holm equation , 2009 .

[22]  Yong Zhou,et al.  Blow up and propagation speed of solutions to the DGH equation , 2009 .

[23]  Zhaoyang Yin,et al.  Global existence and blow-up phenomena for the weakly dissipative Camassa-Holm equation , 2009 .

[24]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[25]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.

[26]  Yong Zhou,et al.  Blow-up of solutions to the DGH equation , 2007 .

[27]  R. Ivanov,et al.  Water waves and integrability , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Yue Liu,et al.  Global existence and blow-up solutions for a nonlinear shallow water equation , 2006 .

[29]  Yong Zhou,et al.  Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation , 2006, math/0604192.

[30]  Existence and Uniqueness of Low Regularity Solutions for the Dullin-Gottwald-Holm Equation , 2006 .

[31]  Lixin Tian,et al.  On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation , 2005 .

[32]  A. Constantin Finite propagation speed for the Camassa-Holm equation , 2005 .

[33]  D. Henry Compactly Supported Solutions of the Camassa-Holm Equation , 2005 .

[34]  Z. Yin Well-posedness, blowup, and global existence for an integrable shallow water equation , 2004 .

[35]  Enrique G. Reyes,et al.  Geometric Integrability of the Camassa–Holm Equation , 2002 .

[36]  Guillermo Rodriguez-Blanco On the Cauchy problem for the Camassa-Holm equation , 2001 .

[37]  Darryl D. Holm,et al.  An integrable shallow water equation with linear and nonlinear dispersion. , 2001, Physical review letters.

[38]  W. Strauss,et al.  Stability of peakons , 2000 .

[39]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[40]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[41]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[42]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[43]  S. Chern,et al.  Pseudospherical surfaces and evolution equations , 1986 .

[44]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[45]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[46]  M. Grunwald Applications Of Lie Groups To Differential Equations , 2016 .

[47]  J. Escher Breaking Water Waves , 2016 .

[48]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[49]  J. Escher,et al.  Global existence and blow-up for a shallow water equation , 1998 .

[50]  M. Tanaka Symmetry analysis. , 1989, Journal of electron microscopy technique.

[51]  P. Olver Applications of lie groups to differential equations , 1986 .

[52]  Tosio Kato,et al.  On the Korteweg-de Vries equation , 1979 .

[53]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .