Computing the Gamma Function Using Contour Integrals and Rational Approximations
暂无分享,去创建一个
[1] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[2] Alphonse P. Magnus,et al. Asymptotics and Super Asymptotics for Best Rational Approximation Error Norms to the Exponential Function (The ‘1/9’ Problem) by the Carathéodory-Fejér Method , 1994 .
[3] J. A. C. Weideman,et al. Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..
[4] William H. Press,et al. Numerical recipes in C , 2002 .
[5] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[6] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[7] R. Spira. Calculation of the Gamma Function by Stirling's Formula , 1971 .
[8] E. Rakhmanov,et al. EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .
[9] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[10] P. Zweifel. Advanced Mathematical Methods for Scientists and Engineers , 1980 .
[11] Nico M. Temme,et al. Computing Special Functions by Using Quadrature Rules , 2004, Numerical Algorithms.
[12] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[13] William H. Press,et al. Numerical Recipes in C, 2nd Edition , 1992 .
[14] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[15] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[16] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[17] Edward W. Ng. A Comparison of Computational Methods and Algorithms for the Complex Gamma Function , 1975, TOMS.
[18] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[19] R. Varga,et al. Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .
[20] A. Aptekarev. Sharp constants for rational approximations of analytic functions , 2002 .
[21] R. Varga,et al. Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .
[22] Glendon Ralph Pugh. AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .
[23] A. Talbot. The Accurate Numerical Inversion of Laplace Transforms , 1979 .