Trust region methods with hierarchical finite element models for PDE-constrained optimization

In this paper, a Hierarchical Trust Region Algorithm for solving PDE-constrained optimization problems is developed. A hierarchy of finite element meshes is used to define a hierarchy of quadratic models for the approximation of the discrete reduced cost functional on the finest mesh. The proposed algorithm simultaneously controls the choice of the model and the size of the trust region radius. Application of the trust region convergence theory allows for proving that every accumulation point of the sequence produced by the algorithm is a stationary point of the discretized problem. Numerical examples illustrate the behavior of the method and show a considerable reduction of computation time compared to the standard Newton trust region scheme.

[1]  C. Geiger,et al.  Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Serge Gratton,et al.  Numerical experience with a recursive trust-region method for multilevel nonlinear bound-constrained optimization , 2010, Optim. Methods Softw..

[4]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[5]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[8]  Stefan Ulbrich,et al.  Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization , 2011, SIAM J. Optim..

[9]  M. Herty A two-level trust-region method for optimal control problems with radiative transfer , 2006 .

[10]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[11]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[12]  Serge Gratton,et al.  Recursive Trust-Region Methods for Multiscale Nonlinear Optimization , 2008, SIAM J. Optim..

[13]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[14]  Ekkehard W. Sachs,et al.  A Trust Region Method for Parabolic Boundary Control Problems , 1999, SIAM J. Optim..

[15]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[16]  Matthias Heinkenschloss,et al.  An Inexact Trust-Region SQP Method with Applications to PDE-Constrained Optimization , 2008 .

[17]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..