Stochastic Boolean Satisfiability

Satisfiability problems and probabilistic models are core topics of artificial intelligence and computer science. This paper looks at the rich intersection between these two areas, opening the door for the use of satisfiability approaches in probabilistic domains. The paper examines a generic stochastic satisfiability problem, SSAT, which can function for probabilistic domains as SAT does for deterministic domains. It shows the connection between SSAT and well-studied problems in belief network inference and planning under uncertainty, and defines algorithms, both systematic and stochastic, for solving SSAT instances. These algorithms are validated on random SSAT formulae generated under the fixed-clause model. In spite of the large complexity gap between SSAT (PSPACE) and SAT (NP), the paper suggests that much of what we have learned about SAT transfers to the probabilistic domain.

[1]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[2]  Christos H. Papadimitriou,et al.  Games against nature , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[4]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[5]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[6]  Giorgio Gallo,et al.  Algorithms for Testing the Satisfiability of Propositional Formulae , 1989, J. Log. Program..

[7]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[8]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[9]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[10]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[11]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[12]  Joan Feigenbaum,et al.  Random debaters and the hardness of approximating stochastic functions , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[13]  Gerald L. Thompson,et al.  A Computational Study of Satisfiability Algorithms for Propositional Logic , 1994, INFORMS J. Comput..

[14]  Paul G. Spirakis,et al.  Tail bounds for occupancy and the satisfiability threshold conjecture , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[16]  J. Hooker,et al.  Branching Rules for Satissability , 1995 .

[17]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[18]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[19]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[20]  Jun Gu,et al.  Algorithms for the satisfiability (SAT) problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[21]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[22]  Dirk C. Mattfeld,et al.  A Computational Study , 1996 .

[23]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[24]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[25]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[26]  Joan Feigenbaum,et al.  Random Debaters and the Hardness of Approximating Stochastic Functions , 1997, SIAM J. Comput..

[27]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[28]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[29]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[30]  E. Allender,et al.  Encyclopaedia of Complexity Results for Finite-Horizon Markov Decision Process Problems , 1997 .

[31]  Marco Schaerf,et al.  Experimental Analysis of the Computational Cost of Evaluating Quantified Boolean Formulae , 1997, AI*IA.

[32]  Michael L. Littman,et al.  Probabilistic Propositional Planning: Representations and Complexity , 1997, AAAI/IAAI.

[33]  Michael L. Littman,et al.  MAXPLAN: A New Approach to Probabilistic Planning , 1998, AIPS.

[34]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[35]  L. Kirousis,et al.  Approximating the unsatisfiability threshold of random formulas , 1998 .

[36]  Michael L. Littman,et al.  The Computational Complexity of Probabilistic Planning , 1998, J. Artif. Intell. Res..

[37]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[38]  Toby Walsh,et al.  Beyond NP: the QSAT phase transition , 1999, AAAI/IAAI.

[39]  Michael L. Littman,et al.  Contingent planning under uncertainty via stochastic satisfiability , 1999, Artif. Intell..

[40]  Eliezer L. Lozinskii,et al.  The Good Old Davis-Putnam Procedure Helps Counting Models , 2011, J. Artif. Intell. Res..

[41]  A. Borodin,et al.  Threshold phenomena in random graph colouring and satisfiability , 1999 .

[42]  Judy Goldsmith,et al.  Nonapproximability Results for Partially Observable Markov Decision Processes , 2011, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[43]  Eric Allender,et al.  Complexity of finite-horizon Markov decision process problems , 2000, JACM.

[44]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[45]  V. Vinay,et al.  Branching rules for satisfiability , 1995, Journal of Automated Reasoning.

[46]  Yishay Mansour,et al.  A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes , 1999, Machine Learning.

[47]  Jinchang Wang,et al.  Solving propositional satisfiability problems , 1990, Annals of Mathematics and Artificial Intelligence.

[48]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.