Polynomial viscosity methods for multispecies kinematic flow models

[1]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[3]  Pep Mulet,et al.  A secular equation for the Jacobian matrix of certain multispecies kinematic flow models , 2010 .

[4]  Pep Mulet,et al.  Characteristic-Based Schemes for Multi-Class Lighthill-Whitham-Richards Traffic Models , 2008, J. Sci. Comput..

[5]  G. Anestis,et al.  Sediment composition due to settling of particles of different sizes , 1985 .

[6]  Raimund Bürger,et al.  Hyperbolicity Analysis of Polydisperse Sedimentation Models via a Secular Equation for the Flux Jacobian , 2010, SIAM J. Appl. Math..

[7]  Rinaldo M. Colombo,et al.  An $n$-populations model for traffic flow , 2003, European Journal of Applied Mathematics.

[8]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[9]  Eleuterio F. Toro,et al.  Roe‐type Riemann solvers for general hyperbolic systems , 2014 .

[10]  Raimund Bürger,et al.  On the implementation of WENO schemes for a class of polydisperse sedimentation models , 2011, J. Comput. Phys..

[11]  Manuel Jesús Castro Díaz,et al.  A Class of Computationally Fast First Order Finite Volume Solvers: PVM Methods , 2012, SIAM J. Sci. Comput..

[12]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[13]  P. I. Richards Shock Waves on the Highway , 1956 .

[14]  Joel Anderson A SECULAR EQUATION FOR THE EIGENVALUES OF A DIAGONAL MATRIX PERTURBATION , 1996 .

[15]  S. Wong,et al.  Hyperbolicity and kinematic waves of a class of multi-population partial differential equations , 2006, European Journal of Applied Mathematics.

[16]  Chi-Wang Shu,et al.  A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model , 2003 .

[17]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[18]  Alice J. Kozakevicius,et al.  Adaptive multiresolution WENO schemes for multi-species kinematic flow models , 2007, J. Comput. Phys..

[19]  Manuel Jesús Castro Díaz,et al.  Approximate Osher-Solomon schemes for hyperbolic systems , 2016, Appl. Math. Comput..

[20]  P. T. Shannon,et al.  Batch and Continuous Thickening. Basic Theory. Solids Flux for Rigid Spheres , 1963 .

[21]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[22]  Manuel Jesús Castro Díaz,et al.  A Class of Incomplete Riemann Solvers Based on Uniform Rational Approximations to the Absolute Value Function , 2014, J. Sci. Comput..

[23]  Pierre Degond,et al.  Polynomial upwind schemes for hyperbolic systems , 1999 .