Schur function analogs for a filtration of the symmetric function space
暂无分享,去创建一个
[1] Anne Schilling,et al. Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials , 1998, math/9802111.
[2] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[3] A. Garsia,et al. A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[4] L. Lapointe,et al. Schur function identities, their t-analogs, and k-Schur irreducibility , 2001 .
[5] Mike Zabrocki,et al. A Macdonald Vertex Operator and Standard Tableaux Statistics , 1998, Electron. J. Comb..
[6] Mark Shimozono. A Cyclage Poset Structure for Littlewood-Richardson Tableaux , 2001, Eur. J. Comb..
[7] Mike Zabrocki,et al. Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .
[8] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[9] A. Lascoux,et al. TABLEAU ATOMS AND A NEW MACDONALD POSITIVITY , 2002 .
[10] L. Lapointe,et al. Tableaux statistics for two part Macdonald polynomials , 1998 .
[11] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[12] A. Garsia,et al. On certain graded Sn-modules and the q-Kostka polynomials , 1992 .
[13] Jerzy Weyman,et al. Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..
[14] Naihuan Jing,et al. Vertex operators and Hall-Littlewood symmetric functions , 1991 .
[15] A. Lascoux,et al. Tableau atoms and a new Macdonald positivity conjecture Duke Math J , 2000 .