Radiative properties of scattering and absorbing dense media: theory and experimental study

We investigate the validity of the radiative transfer equation to model transmission of light through an absorbing and scattering medium. Assuming that radiative transfer equation is valid, the inverse scattering problem for non-polarized radiative transfer in one-dimensional absorbing and scattering media is solved using a parameter identification method. We discuss how to identify the albedo, phase function and extinction coefficient of the medium. We present experimental data that confirm that this approach is robust and can be used to make reliable predictions of the behavior of scattering absorbing systems.

[1]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[2]  Light transfer problem in turbid media with surface reflectivity , 1996 .

[3]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[4]  Knut Stamnes,et al.  A New Look at the Discrete Ordinate Method for Radiative Transfer Calculations in Anisotropically Scattering Atmospheres , 1981 .

[5]  Stuart W. Churchill,et al.  Representation of the Angular Distribution of Radiation Scattered by a Spherical Particle , 1955 .

[6]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[7]  Yasuo Kuga,et al.  Attenuation constant of a coherent field in a dense distribution of particles , 1982 .

[8]  R. Sánchez,et al.  Iterative inverse radiative transfer method to estimate optical thickness and surface albedo , 1990 .

[9]  Identification of the effective radiative properties of a hot, thick, porous medium , 1998 .

[10]  Warren J. Wiscombe,et al.  On initialization, error and flux conservation in the doubling method , 1976 .

[11]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[12]  J. A. Roux,et al.  Mie scattering by spheres in an absorbing medium: Erratum , 1974 .

[13]  H. V. Hulst Asymptotic fitting, a method for solving anisotropic transfer problems in thick layers , 1968 .

[14]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[15]  Kuo-Nan Liou,et al.  A Numerical Experiment on Chandrasekhar's Discrete-Ordinate Method for Radiative Transfer: Applications to Cloudy and Hazy Atmospheres , 1973 .

[16]  William L. Dunn Inverse Monte Carlo analysis , 1981 .

[17]  Radiative transport in a planar medium exposed to azimuthally unsymmetric incident radiation , 1986 .

[18]  J. Freund Aerosol Single-Scattering Albedo in the Arctic, Determined from Ground-Based Nonspectral Solar Irradiance Measurements , 1983 .

[19]  C. Siewert On establishing a two-term scattering law in the theory of radiative transfer , 1979 .

[20]  George W. Kattawar,et al.  A three parameter analytic phase function for multiple scattering calculations , 1975 .

[21]  Norman J. McCormick,et al.  Sensitivity of multiple-scattering inverse transport methods to measurement errors , 1985 .

[22]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[23]  M. N. Özişik,et al.  An inverse radiation problem , 1989 .

[24]  R. Sánchez,et al.  Numerical evaluation of optical single-scattering properties using multiple-scattering inverse transport methods , 1982 .

[25]  A. Smith,et al.  Determination of radiative properties from transport theory and experimental data , 1981 .

[26]  Hung-Yi Li,et al.  Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity , 1993 .

[27]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[28]  C. G. Broyden The convergence of single-rank quasi-Newton methods , 1970 .

[29]  A constrained least-squares method for limited inverse scattering problems , 1988 .

[30]  M. N. Özişik,et al.  Inverse radiation problems in inhomogeneous media , 1988 .

[31]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[32]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[33]  G. Hunt,et al.  Discrete space theory of radiative transfer II. Stability and non-negativity , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  L. Hespel,et al.  Mie light-scattering granulometer with adaptive numerical filtering. I. Theory. , 2000, Applied optics.

[35]  G. E. Hunt,et al.  Discrete space theory of radiative transfer I. Fundamentals , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.