Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems

Adaptive finite element methods for stationary convectiondiffusion problems are designed and analyzed. The underlying discretization scheme is the Shock-capturing Streamline Diffusion method. The adaptive algorithms proposed are based on a posteriori error estimates for this method leading to reliable methods in the sense that the desired error control is guaranteed. A priori error estimates are used to show that the algorithms are efficient in a certain sense.

[1]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[2]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[3]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[4]  K. Morgan,et al.  FEM-FCT - Combining unstructured grids with high resolution. [Flux Corrected Transport , 1988 .

[5]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[6]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[7]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[8]  Peter Hansbo,et al.  Adaptive streamline diffusion methods for compressible flow using conservation variables , 1991 .

[9]  Claes Johnson,et al.  On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .

[10]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[11]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[12]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[13]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .