The Subtle Unphysical Hypothesis of the Firewall Theorem

The black-hole firewall theorem derives a suspicious consequence (large energy-momentum density at the horizon of a black hole) from a set of seemingly reasonable hypotheses. I point out the hypothesis that is likely to be unrealistic (a hypothesis not always sufficiently made explicit) and discuss the subtle confusion at its origin: mixing-up of two different notions of entropy and misusing the entropy bound.

[1]  A. Barrau,et al.  Phenomenology of bouncing black holes in quantum gravity: a closer look , 2015, 1507.05424.

[2]  Rovelli Black Hole Entropy from Loop Quantum Gravity. , 1996, Physical review letters.

[3]  A. Ashtekar,et al.  Quantum extension of the Kruskal spacetime , 2018, Physical Review D.

[4]  C. Vafa,et al.  Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.

[5]  Marios Christodoulou,et al.  Volume inside old black holes , 2016, 1604.07222.

[6]  Hal M. Haggard,et al.  White holes as remnants: a surprising scenario for the end of a black hole , 2018, Classical and Quantum Gravity.

[7]  C. Wuthrich Quantum Gravity from General Relativity , 2017, The Routledge Companion to Philosophy of Physics.

[8]  Qing-yu Cai,et al.  Information conservation is fundamental: recovering the lost information in Hawking radiation , 2013, 1305.6341.

[9]  K. Yamaguchi,et al.  Soft-Hair-Enhanced Entanglement Beyond Page Curves in a Black Hole Evaporation Qubit Model. , 2017, Physical review letters.

[10]  Does Yang‐Mills theory describe quantum gravity? , 2014, 1407.5322.

[11]  J. Kaplan,et al.  On information loss in AdS3/CFT2 , 2016 .

[12]  C. Corda Time dependent Schrödinger equation for black hole evaporation: No information loss , 2013, 1304.1899.

[13]  Alejandro Perez,et al.  Black holes in loop quantum gravity , 2017, Reports on progress in physics. Physical Society.

[14]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[15]  C. Rovelli,et al.  Small Black/White Hole Stability and Dark Matter , 2018, Universe.

[16]  J. Polchinski,et al.  Gauge-gravity duality and the black hole interior. , 2013, Physical review letters.

[17]  C. Rovelli Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument , 2017, 1710.00218.

[18]  R. Bousso,et al.  Prepared for submission to JHEP A Quantum Focussing Conjecture , 2015 .

[19]  A. Ashtekar,et al.  Quantum geometry and black hole entropy , 1998 .

[20]  J. Kaplan,et al.  On information loss in AdS3/CFT2 , 2016, Journal of High Energy Physics.

[21]  J. Polchinski,et al.  An apologia for firewalls , 2013, Journal of High Energy Physics.

[22]  C. Rovelli,et al.  Planck-Star Tunnelling-Time: an Astrophysically Relevant Observable from Background-Free Quantum Gravity , 2016 .

[23]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[24]  C. Rovelli,et al.  How big is a black hole , 2014, 1411.2854.

[25]  David Wallace,et al.  Why Black Hole Information Loss Is Paradoxical , 2017, Beyond Spacetime.

[26]  C. Rovelli,et al.  Fast Radio Bursts and White Hole Signals , 2014, 1409.4031.

[27]  Alejandro Perez No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox , 2014, 1410.7062.

[28]  W. Unruh,et al.  Information loss , 2017, Reports on progress in physics. Physical Society.

[29]  Page Information in black hole radiation. , 1993, Physical review letters.