Structured FISTA for image restoration
暂无分享,去创建一个
Bo Yu | Yuanzhe Xi | Zixuan Chen | James Nagy | J. Nagy | Yuanzhe Xi | Bo Yu | Zixuan Chen
[1] James G. Nagy,et al. A scaled gradient method for digital tomographic image reconstruction , 2018 .
[2] Marc Teboulle,et al. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.
[3] Lothar Reichel,et al. Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..
[4] T. Ypma,et al. Deblurring Images , 2020 .
[5] Khalide Jbilou,et al. A generalized matrix Krylov subspace method for TV regularization , 2018, J. Comput. Appl. Math..
[6] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[7] K. Jbilou,et al. Sylvester Tikhonov-regularization methods in image restoration , 2007 .
[8] Jianlin Xia,et al. Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling , 2014, SIAM J. Matrix Anal. Appl..
[9] Dianne P. O'Leary,et al. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..
[10] Raymond H. Chan,et al. A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..
[11] Raymond H. Chan,et al. A Fast Randomized Eigensolver with Structured LDL Factorization Update , 2014, SIAM J. Matrix Anal. Appl..
[12] Gene H. Golub,et al. Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..
[13] James G. Nagy,et al. Optimal Kronecker Product Approximation of Block Toeplitz Matrices , 2000, SIAM J. Matrix Anal. Appl..
[14] Marc Teboulle,et al. Gradient-based algorithms with applications to signal-recovery problems , 2010, Convex Optimization in Signal Processing and Communications.
[15] J. Nagy,et al. A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .
[16] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[17] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[18] Michael K. Ng,et al. Kronecker Product Approximations forImage Restoration with Reflexive Boundary Conditions , 2003, SIAM J. Matrix Anal. Appl..
[19] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[20] Maria Rosaria Russo,et al. On Krylov projection methods and Tikhonov regularization , 2015 .
[21] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[22] James G. Nagy,et al. An alternating direction method of multipliers for the solution of matrix equations arising in inverse problems , 2018, Numer. Linear Algebra Appl..
[23] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[24] Per Christian Hansen,et al. IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems , 2017, Numerical Algorithms.
[25] Jianlin Xia,et al. A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..