On the Behaviour of the Solutions of a Second-Order Difference Equation

We study the difference equation x n + 1 = α − x n / x n − 1 , n ∈ ℕ 0 , where α ∈ ℝ and where x − 1 and x 0 are so chosen that the corresponding solution ( x n ) of the equation is defined for every n ∈ ℕ . We prove that when α = 3 the equilibrium x ¯ = 2 of the equation is not stable, which corrects a result due to X. X. Yan, W. T. Li, and Z. Zhao. For the case α = 1 , we show that there is a strictly monotone solution of the equation, and we also find its asymptotics. An explicit formula for the solutions of the equation are given for the case α = 0 .

[1]  Lothar Berg,et al.  Inclusion Theorems for Non-linear Difference Equations with Applications , 2004 .

[2]  George L. Karakostas Asymptotic 2–periodic difference equations with diagonally self–invertible responses , 2000 .

[3]  Stevo Stević,et al.  Global stability and asymptotics of some classes of rational difference equations , 2006 .

[4]  T. Sun,et al.  On boundedness of the solutions of the difference equation xn , 2006 .

[5]  G. Ladas,et al.  A Global Convergence Result with Applications to Periodic Solutions , 2000 .

[6]  K. Berenhaut,et al.  The difference equation xn + 1 = α + xn − k ∑ k − 1 i = 0 cixn − i has solutions converging to zero , 2006 .

[7]  Lothar Berg,et al.  On the Asymptotics of Nonlinear Difference Equations , 2002 .

[8]  Stevo Stević Short Note: A Note on Periodic Character of a Difference Equation , 2004 .

[9]  Sin-Ei Takahasi,et al.  ON CONVERGENCE OF A RECURSIVE SEQUENCE $x_{n+1} = f(x_{n-1}, x_n)$ , 2006 .

[10]  JOHN D. FOLEY,et al.  The global attractivity of the rational difference equation yn =1 , 2022 .

[11]  C. Kent Convergence of solutions in a nonhyperbolic case , 2001 .

[12]  L. Berg Nonlinear Difference Equations with Periodic Solutions , 2006 .

[13]  Kenneth S. Berenhaut,et al.  The behaviour of the positive solutions of the difference equation , 2006 .

[14]  Stevo Stevic,et al.  On positive solutions of a (k+1)th order difference equation , 2006, Appl. Math. Lett..

[15]  S. Stević Asymptotic behavior of solutions of a nonlinear difference equation with continuous argument , 2004 .

[16]  Stevo Stevic,et al.  Existence of nontrivial solutions of a rational difference equation , 2007, Appl. Math. Lett..

[17]  Stevo Stević,et al.  On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .

[18]  Kenneth S. Berenhaut,et al.  The difference equation xn+1=α+xn−k∑i=0k−1cixn−i has solutions converging to zero , 2007 .

[19]  Lothar Berg,et al.  Asymptotische Darstellungen und Entwicklungen , 1968 .

[20]  Stevo Stević,et al.  Asymptotic behavior of a sequence defined by iteration with applications , 2002 .

[21]  Alaa E. Hamza,et al.  On the recursive sequence xn+1=α+xn−1xn , 2006 .

[22]  I. Ozturk,et al.  On the recursive sequence yn+1 = (alpha+yn-1)/(beta+yn) + yn-1/yn , 2007, Appl. Math. Comput..

[23]  W. Kosmala,et al.  More on the Difference Equation y n + 1 = ( p + y n −1 )/( qy n + y n −1 ) , 2002 .

[24]  K. Berenhaut,et al.  A note on the difference equation , 2005 .

[25]  Xiaofan Yang,et al.  Global asymptotic stability in a class of generalized Putnam equations , 2006 .

[26]  Kenneth S. Berenhaut,et al.  The global attractivity of the rational difference equation _{}=1+\frac{_{-}}_{-} , 2007 .

[27]  G. Ladas,et al.  On the recursive sequence _{+1}=\frac{}_{}+\frac{1}_{-2} , 1998 .

[28]  Stevo Stevic,et al.  The global attractivity of the rational difference equation yn = (yn-k + yn-m) / (1 + yn-k yn-m) , 2007, Appl. Math. Lett..

[29]  Stevo Stevi´c,et al.  ON THE RECURSIVE SEQUENCE $x_{n+1}=\displaystyle\frac{A}{\prod^k_{i=0}x_{n-i}}+\displaystyle\frac{1}{\prod^{2(k+1)}_{j=k+2}x_{n-j}}$ , 2003 .

[30]  Lothar Berg,et al.  Corrigendum: Corrections to ‘Inclusion theorems for non-linear difference equations with applications’ , 2005 .

[31]  Alaa E. Hamza,et al.  On the recursive sequence xn+1= , 2008, Comput. Math. Appl..

[32]  Lothar Berg,et al.  On a Class of Generalized Autoconvolution Equations of the Third Kind , 2005 .

[33]  H. Voulov Existence of monotone solutions of some difference equations with unstable equilibrium , 2002 .

[34]  G. Ladas,et al.  ON THE RECURSIVE SEQUENCE XN+1 = A/XN+ 1/XN-2 , 1998 .

[35]  G. Karakostas,et al.  Convergence of a difference equation via the full limiting sequences method , 1993 .

[36]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[37]  Wan-Tong Li,et al.  On the recursive sequencexn+1=α-(xn/xn−1) , 2005 .

[38]  Stevo Stevi´c,et al.  ON THE RECURSIVE SEQUENCE $x_{n+1}=x_{n-1}/g(x_n)$ , 2002 .