Free-space photonics in switching

Free-space digital optics is a new technology that exploits the ability of optics to handle thousands of light beams, or information channels, at once. This and other features of optics complement the strengths and weaknesses of purely electronic systems. Especially when combined with electronics, free-space optics allows the development of new architectures in digital systems. In particular, it offers large numbers of closely spaced interconnections inside digital processors that can be used to make large digital switching fabrics. In this paper, we outline some of the strengths and weaknesses of this emerging technology, and we briefly describe some of its experimental systems.

[1]  K. Kyuma,et al.  Differential optical switching at subnanowatt input power , 1989, IEEE Photonics Technology Letters.

[2]  Chin-Tau A. Lea Bipartite graph design principle for photonic switching systems , 1990, IEEE Trans. Commun..

[3]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[4]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[5]  G. D. Boyd,et al.  Dynamic optical switching of symmetric self‐electro‐optic effect devices , 1990 .

[6]  A. L. Lentine,et al.  Symmetric self-electrooptic effect device : optical set-reset latch, defferential logic gate and differential modulator/detector , 1989 .

[7]  M.D. Feuer,et al.  Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator and transistor , 1989, IEEE Photonics Technology Letters.

[8]  T J Cloonan,et al.  Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes. , 1991, Applied optics.

[9]  Arun N. Netravali,et al.  Dilated Networks for Photonic Switching , 1987, IEEE Trans. Commun..

[10]  H. S. Hinton,et al.  Photonic switching using directional couplers , 1987, IEEE Communications Magazine.

[11]  M. Islam,et al.  All-optical cascadable NOR gate with gain. , 1990, Optics letters.

[12]  T J Cloonan,et al.  Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices. , 1992, Applied optics.

[13]  M E Prise,et al.  Optical digital processor using arrays of symmetric self-electrooptic effect devices. , 1991, Applied optics.

[14]  Tawee Tanbun-Ek,et al.  A systems perspective on digital interconnection technology , 1992 .

[15]  B. Tell,et al.  Characteristics of top-surface-emitting GaAs quantum-well lasers , 1990, IEEE Photonics Technology Letters.

[16]  David A. B. Miller,et al.  QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES , 1990 .

[17]  B K Jenkins,et al.  Sequential optical logic implementation. , 1984, Applied optics.

[18]  G. W. Taylor,et al.  A new double‐heterostructure optoelectronic switching device using molecular‐beam epitaxy , 1986 .

[19]  E. J. Restall,et al.  Space-variant holographic optical elements in dichromated gelatin. , 1991, Applied optics.

[20]  D. Miller,et al.  GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates , 1989, IEEE Photonics Technology Letters.

[21]  Arūnas Krotkus,et al.  Simulations and experiments of mode-locking of semiconductor lasers: pulse evolution, frequency detuning, and bias dependence , 1990 .

[22]  Jack L. Jewell,et al.  Digital optics , 1989, Proc. IEEE.