An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

[1]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[2]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[3]  D. Kimes Dynamics of directional reflectance factor distributions for vegetation canopies. , 1983, Applied optics.

[4]  C. Riordan,et al.  Spectral solar irradiance data sets for selected terrestrial conditions , 1985 .

[5]  Piers J. Sellers,et al.  Inferring hemispherical reflectance of the earth's surface for global energy budgets from remotely sensed nadir or directional radiance values , 1985 .

[6]  D. S. Kimes,et al.  Hemispherical Reflectance Variations of Vegetation Canopies and Implications for Global and Regional Energy Budget Studies , 1987 .

[7]  C. Justice,et al.  Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations , 1988 .

[8]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[9]  M. Leroy,et al.  Evidence of surface reflectance bidirectional effects from a NOAA/ AVHRR multi-temporal data set , 1992 .

[10]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[12]  Zhanqing Li,et al.  Estimation of surface albedo from space: A parameterization for global application , 1994 .

[13]  Alan H. Strahler,et al.  Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  Alan H. Strahler,et al.  MODIS BRDF/Albedo Product: Algorithm Theoretical Bais Document v3.2 , 1995 .

[15]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[16]  C. Justice,et al.  A revised land surface parameterization (SiB2) for GCMs. Part III: The greening of the Colorado State University general circulation model , 1996 .

[17]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[18]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[19]  J. Roujean,et al.  Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS , 1997 .

[20]  J. Privette,et al.  Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/MODIS‐like data , 1997 .

[21]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[22]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[23]  Bernard Pinty,et al.  Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[24]  Terry L. Sohl,et al.  Regional characterization of land cover using multiple sources of data , 1998 .

[25]  M. Leroy,et al.  Surface bidirectional reflectance distribution function observed at global scale by POLDER/ADEOS , 1998 .

[26]  G. Gutman,et al.  Mapping global land surface albedo from NOAA AVHRR , 1999 .

[27]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[28]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 1. Theory , 2000 .

[29]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[30]  R. Betts Offset of the potential carbon sink from boreal forestation by decreases in surface albedo , 2000, Nature.

[31]  P. Bicheron,et al.  Bidirectional reflectance distribution function signatures of major biomes observed from space , 2000 .

[32]  Victor Brovkin,et al.  Biogeophysical versus biogeochemical feedbacks of large‐scale land cover change , 2001 .

[33]  J. Key,et al.  Estimating the cloudy-sky albedo of sea ice and snow from space , 2001 .

[34]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[35]  N. C. Strugnell,et al.  An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs , 2001 .

[36]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[37]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[38]  Bernard Pinty,et al.  Note on "An improved model of surface BRDF-atmospheric coupled radiation" , 2002, IEEE Trans. Geosci. Remote. Sens..

[39]  J. Lovell,et al.  Analysis of POLDER-ADEOS data for the Australian continent: The relationship between BRDF and vegetation structure , 2002 .

[40]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[41]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[42]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[43]  Chad J. Shuey,et al.  Narrowband to broadband conversions of land surface albedo: II , 2003 .

[44]  C. Woodcock,et al.  Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation , 2003 .

[45]  F. Maignan,et al.  Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot , 2004 .

[46]  C. Bacour,et al.  Variability of biome reflectance directional signatures as seen by POLDER , 2005 .

[47]  Shunlin Liang,et al.  VIIRS narrowband to broadband land surface albedo conversion: formula and validation , 2005 .

[48]  D. Roy,et al.  Fire‐induced albedo change and its radiative forcing at the surface in northern Australia , 2005 .

[49]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[50]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[51]  Jeffrey G. Masek,et al.  Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling , 2006 .

[52]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[53]  Tilden P. Meyers,et al.  Determining vegetation indices from solar and photosynthetically active radiation fluxes , 2007 .

[54]  Correction for Bala et al., Combined climate and carbon-cycle effects of large-scale deforestation , 2007, Proceedings of the National Academy of Sciences.

[55]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[56]  Alan H. Strahler,et al.  Quality assessment of BRDF/albedo retrievals in MODIS operational system , 2008 .

[57]  Bernhard Geiger,et al.  Land Surface Albedo Derived on a Daily Basis From Meteosat Second Generation Observations , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[58]  S. Frolking,et al.  Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks , 2008, Proceedings of the National Academy of Sciences.

[59]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[60]  Scott D. Peckham,et al.  Fire-induced changes in green-up and leaf maturity of the Canadian boreal forest , 2008 .

[61]  Nadine Gobron,et al.  Partitioning the Solar Radiant Fluxes in Forest Canopies in the Presence of Snow , 2008 .

[62]  Scott L. Powell,et al.  Forest Disturbance and North American Carbon Flux , 2008 .

[63]  Alan H. Strahler,et al.  Retrieval of Surface Albedo from Satellite Sensors , 2008 .

[64]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[65]  David P. Roy,et al.  Generation of Temporally Complete Daily Nadir MODIS Reflectance Time Series , 2010 .

[66]  J. Randerson,et al.  Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations , 2008 .

[67]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[68]  T. A. Black,et al.  Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? , 2009 .

[69]  Crystal B. Schaaf,et al.  Development and assessment of broadband surface albedo from Clouds and the Earth's Radiant Energy System Clouds and Radiation Swath data product , 2009 .

[70]  Yanmin Shuai,et al.  Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle , 2009 .

[71]  Christoph Thomas,et al.  Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon , 2009 .

[72]  Y. Shuai Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS) , 2010 .

[73]  Jean-Louis Roujean,et al.  Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Alan H. Strahler,et al.  Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products , 2010 .

[75]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[76]  Feng Gao,et al.  Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes , 2010 .

[77]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[78]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[79]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[80]  Christopher O. Justice,et al.  Land remote sensing and global environmental change : NASA's earth observing system and the science of ASTER and MODIS , 2011 .

[81]  Chengquan Huang,et al.  Quality assessment of Landsat surface reflectance products using MODIS data , 2012, Comput. Geosci..

[82]  B. Law,et al.  Effects of water availability on carbon and water exchange in a young ponderosa pine forest: Above- and belowground responses , 2012 .

[83]  W. Cohen,et al.  Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan , 2012 .

[84]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[85]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[86]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[87]  Crystal B. Schaaf,et al.  Radiative forcing of natural forest disturbances , 2012 .

[88]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[89]  Dean Vickers,et al.  Five years of carbon fluxes and inherent water-use efficiency at two semi-arid pine forests with different disturbance histories , 2012 .

[90]  W. Cohen,et al.  United States Forest Disturbance Trends Observed Using Landsat Time Series , 2013, Ecosystems.

[91]  C. Justice,et al.  Land and cryosphere products from Suomi NPP VIIRS: Overview and status , 2013, Journal of geophysical research. Atmospheres : JGR.

[92]  Mats Nilsson,et al.  Energy exchange and water budget partitioning in a boreal minerogenic mire , 2013 .

[93]  Donghui Xie,et al.  Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics , 2013 .

[94]  Zhuosen Wang,et al.  Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[95]  Ranga B. Myneni,et al.  Temperature and vegetation seasonality diminishment over northern lands , 2013 .

[96]  J. Wickham,et al.  Accuracy assessment of NLCD 2006 land cover and impervious surface , 2013 .

[97]  Understanding of crop phenology using satellite-based retrievals and climate factors – a case study on spring maize in Northeast China plain , 2014 .

[98]  Shunlin Liang,et al.  Fusion of Satellite Land Surface Albedo Products Across Scales Using a Multiresolution Tree Method in the North Central United States , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[99]  C. Woodcock,et al.  Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods , 2014 .