Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI

This article addresses whether or not diffusion MRI, a noninvasive technique that probes the microstructural aspects of tissue, can be used to quantify the white matter connectivity of the human brain in vivo. It begins by studying the motivation, that is, the increasing trend to look at ‘functional connectivity’ in the brain, which implies that the brain operates as a distributed network of active locations. A brief summary of diffusion MRI and fiber tracking is given and the early applications of diffusion MRI to study connectivity are reviewed. A close and critical inspection is then made of the limitations inherent in these different approaches, challenging the notion that it is possible to quantify brain connectivity in vivo with diffusion MRI. Finally, steps toward improving quantification of connectivity, by integrating information from other techniques, are suggested.

[1]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[2]  Karl J. Friston,et al.  Schizophrenia: a disconnection syndrome? , 1995, Clinical neuroscience.

[3]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[4]  M S Buchsbaum,et al.  MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia , 1998, Neuroreport.

[5]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[6]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[7]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[9]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[10]  C. Büchel,et al.  Estimation of anatomical connectivity from diffusion tensor data , 2001, NeuroImage.

[11]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[12]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[13]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[14]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[15]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[16]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[17]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[18]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[19]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[20]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[21]  Gareth J. Barker,et al.  Three-dimensional quantitative magnetisation transfer imaging of the human brain , 2005, NeuroImage.

[22]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[23]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[24]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[25]  D. Salat,et al.  Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Manabu Kinoshita,et al.  Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation , 2005, NeuroImage.

[27]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[28]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[29]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[30]  Justin L. Vincent,et al.  Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior , 2007, Neuron.

[31]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[32]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[33]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[34]  Jeffrey J Neil,et al.  Diffusion imaging concepts for clinicians , 2008, Journal of magnetic resonance imaging : JMRI.

[35]  R. Henry,et al.  Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings , 2008, American Journal of Neuroradiology.

[36]  Derek K. Jones,et al.  Gleaning multicomponent T1 and T2 information from steady‐state imaging data , 2008, Magnetic resonance in medicine.

[37]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[38]  Geoffrey J. M. Parker,et al.  Probabilistic fibre tracking: Differentiation of connections from chance events , 2008, NeuroImage.

[39]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[40]  Heidi Johansen-Berg,et al.  Using diffusion imaging to study human connectional anatomy. , 2009, Annual review of neuroscience.

[41]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[42]  Roland Bammer,et al.  New methods in diffusion-weighted and diffusion tensor imaging. , 2009, Magnetic resonance imaging clinics of North America.

[43]  Karl J. Friston,et al.  Tractography-based priors for dynamic causal models , 2009, NeuroImage.

[44]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[45]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[46]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[47]  P. Bhattacharya Diffusion MRI: Theory, methods, and applications, Derek K. Jones (Ed.). Oxford University press (2011), $152.77 , 2012 .