A block coordinate descent method of multipliers: Convergence analysis and applications

In this paper, we consider a nonsmooth convex problem with linear coupling constraints. Problems of this form arise in many modern large-scale signal processing applications including the provision of smart grid networks. In this work, we propose a new class of algorithms called the block coordinate descent method of multipliers (BCDMM) to solve this family of problems. The BCDMM is a primal-dual type of algorithm. It optimizes an (approximate) augmented Lagrangian of the original problem one block variable per iteration, followed by a gradient update for the dual variable. We show that under certain regularity conditions, and when the order for which the block variables are either updated in a deterministic or a random fashion, the BCDMM converges to the set of optimal solutions. The effectiveness of the algorithm is illustrated using large-scale basis pursuit and smart grid problems.

[1]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[2]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[3]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[4]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[5]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[6]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[7]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[8]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[9]  Ambuj Tewari,et al.  Stochastic methods for l1 regularized loss minimization , 2009, ICML '09.

[10]  Z. Luo,et al.  On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems , 2013, Journal of the Operations Research Society of China.

[11]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[12]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[13]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[14]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[15]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[16]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[17]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[18]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[19]  Ambuj Tewari,et al.  On the Nonasymptotic Convergence of Cyclic Coordinate Descent Methods , 2013, SIAM J. Optim..

[20]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[21]  Mikhail V. Solodov,et al.  On the Convergence of Constrained Parallel Variable Distribution Algorithms , 1998, SIAM J. Optim..

[22]  ZhangXiaoqun,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2011 .

[23]  Jukka Paatero,et al.  A model for generating household electricity load profiles , 2006 .

[24]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[25]  Mingyi Hong,et al.  Equilibrium Pricing of Interference in Cognitive Radio Networks , 2011, IEEE Transactions on Signal Processing.

[26]  Anna Scaglione,et al.  Demand-Side Management in the Smart Grid: Information Processing for the Power Switch , 2012, IEEE Signal Processing Magazine.

[27]  Anna Scaglione,et al.  Coordinated home energy management for real-time power balancing , 2012, 2012 IEEE Power and Energy Society General Meeting.

[28]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[29]  Na Li,et al.  Optimal demand response based on utility maximization in power networks , 2011, 2011 IEEE Power and Energy Society General Meeting.

[30]  Xiangfeng Wang,et al.  The Linearized Alternating Direction Method of Multipliers for Dantzig Selector , 2012, SIAM J. Sci. Comput..

[31]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[32]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.