Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films

Corona poling is an interesting non-contact poling process for ferroelectric materials which, has in the past, been extensively applied to ferroelectric polymers, but not to other types of ferroelectric materials. Here, it has been investigated as an alternative technique to the conventional direct-contact poling of ferroelectric thin films. Contact-poling and corona poling techniques were applied to highly (001)/(100) oriented lead zirconate titanate thin films of composition 52% Zr, 48% Ti (PZT52/48). Different poling voltages and durations were used to pole the samples, and the effects on the piezoelectric coefficients e31,f and d33,f were explored. From the magnitudes of piezoelectric coefficients and suppression of e31,f relative to d33,f, it was concluded that corona poling is a more suitable technique for poling PZT52/48 thin films than direct poling, since piezoelectric coefficients were higher and sample damage was less for corona poling when compared with contact-poling.