An H∞ approach to fault estimation of non-linear systems: Application to one-link manipulator

The paper is focused on the problem of robust fault estimation of non-linear discrete-time systems. The general unknown input observer scheme and the H∞ framework are applied to design a robust fault estimation methodology. The main advantage of the proposed approach is its simplicity resulting from the boiling down of designing methodology to solving a set of linear matrix inequalities, which can be efficiently done by the application of modern computational packages. The resulting approach guaranties that a prescribed disturbance attenuation level is achieved with respect to the fault estimation error while guaranteeing the convergence of the observer with a possibly large decay rate of the state estimation error. The final part of the paper presents an illustrative example regarding the application of the proposed approach to faults estimation of the one-link manipulator.

[1]  D. Siljak,et al.  Robust stability and stabilization of discrete-time non-linear systems: The LMI approach , 2001 .

[2]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems , 2007, Autom..

[3]  Alex M. Andrew,et al.  Fault Diagnosis: Models, Artificial Intelligence, Applications , 2005 .

[4]  Marcin Witczak Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches , 2007 .

[5]  P. Dorato,et al.  Observing the states of systems with unmeasurable disturbances , 1975 .

[6]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[7]  Guillaume Ducard,et al.  Fault-tolerant Flight Control and Guidance Systems , 2009 .

[8]  Marcin Witczak,et al.  State-Space GMDH Neural Networks for Actuator Robust Fault Diagnosis , 2012 .

[9]  Guillaume Ducard,et al.  Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles , 2009 .

[10]  Ali Zemouche,et al.  Observers for a class of Lipschitz systems with extension to Hinfinity performance analysis , 2008, Syst. Control. Lett..

[11]  Hassan Hammouri,et al.  Failure diagnosis and nonlinear observer. Application to a hydraulic process , 2002, J. Frankl. Inst..

[12]  Vincent Cocquempot,et al.  Robust nonlinear observer design for actuator fault detection in diesel engines , 2013, Int. J. Appl. Math. Comput. Sci..

[13]  Marcin Mrugalski,et al.  Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis , 2013, Studies in Computational Intelligence.

[14]  Ali Zemouche,et al.  Observer Design for Lipschitz Nonlinear Systems: The Discrete-Time Case , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  A. Pertew,et al.  H ∞ synthesis of unknown input observers for non-linear Lipschitz systems , 2005 .

[16]  Kalyana Chakravarthy Veluvolu,et al.  Nonlinear sliding mode high-gain observers for fault estimation , 2011, Int. J. Syst. Sci..

[17]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[18]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..

[19]  Marios M. Polycarpou,et al.  Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation , 2010, Autom..

[20]  Vicenç Puig,et al.  LMI-based strategies for designing observers and unknown input observers for non-linear discrete-time systems , 2007 .

[21]  Masoud Abbaszadeh,et al.  LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete‐time nonlinear uncertain systems , 2009 .

[22]  Vicenç Puig,et al.  Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies , 2010, Int. J. Appl. Math. Comput. Sci..

[23]  Janina Decker,et al.  Fault Tolerant Control Systems Design And Practical Applications , 2016 .

[24]  Paul M. Frank,et al.  Diagnosis strategies and systems: principles, fuzzy and neural approaches , 2000 .

[25]  Marcin Mrugalski,et al.  An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection , 2013, Int. J. Appl. Math. Comput. Sci..

[26]  Karolos M. Grigoriadis,et al.  Robust fault estimation of uncertain systems using an LMI‐based approach , 2008 .

[27]  Marcin Witczak,et al.  Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems , 2014 .

[28]  M. Darouach,et al.  Two-stage Kalman estimator with unknown exogenous inputs , 1999, Autom..

[29]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[30]  R. Rajamani,et al.  Existence and design of observers for nonlinear systems: Relation to distance to unobservability , 1998 .