Design and classification of dynamic multi-objective optimization problems

In this work we provide a formal model for the different time-dependent components that can appear in dynamic multi-objective optimization problems, along with a classification of these components. Four main classes are identified, corresponding to the influence of the parameters, objective functions, previous states of the dynamic system and, last, environment changes, which in turn lead to online optimization problems. For illustration purposes, examples are provided for each class identified - by no means standing as the most representative ones or exhaustive in scope.

[1]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[2]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[3]  Philippe Collard,et al.  An Evolutionary Approach for Time Dependent Optimization , 1997, Int. J. Artif. Intell. Tools.

[4]  Hussein A. Abbass,et al.  Multiobjective optimization for dynamic environments , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[6]  Kiyoshi Tanaka,et al.  Insights on properties of multiobjective MNK-landscapes , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  Peter A. N. Bosman,et al.  Evolutionary Multiobjective Optimization for Dynamic Hospital Resource Management , 2009, EMO.

[8]  Kenneth A. De Jong,et al.  Evolving in a Changing World , 1999, ISMIS.

[9]  Peter A. N. Bosman,et al.  Learning, anticipation and time-deception in evolutionary online dynamic optimization , 2005, GECCO '05.

[10]  Bojin Zheng,et al.  Perspectives in Dynamic Optimization Evolutionary Algorithm , 2010, ISICA.

[11]  Peter A. N. Bosman,et al.  Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case , 2007, GECCO '07.

[12]  K. Yaniasaki,et al.  Dynamic optimization by evolutionary algorithms applied to financial time series , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[14]  G. Rudolph,et al.  Evolutionary Optimization of Dynamic Multi-objective Test Functions , 2006 .

[15]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[16]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[17]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.