Multichannel Deconvolution of Seismic Signals Using Statistical MCMC Methods

In this paper, we propose two multichannel blind deconvolution algorithms for the restoration of two-dimensional (2D) seismic data. Both algorithms are based on a 2D reflectivity prior model, and use iterative multichannel deconvolution procedures which deconvolve the seismic data, while taking into account the spatial dependency between neighboring traces. The first algorithm employs in each step a modified maximum posterior mode (MPM) algorithm which estimates a reflectivity column from the corresponding observed trace using the estimate of the preceding reflectivity column. The second algorithm takes into account estimates of both the preceding and subsequent columns in the estimation process. Both algorithms are applied to synthetic and real data and demonstrate better results compared to those obtained by a single-channel deconvolution method. Expectedly, the second algorithm which utilizes more information in the estimation process of each reflectivity column is shown to produce better results than the first algorithm.

[1]  Yves Goussard,et al.  Markov modeling for Bayesian restoration of two-dimensional layered structures , 1993, IEEE Trans. Inf. Theory.

[2]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Benayad Nsiri,et al.  Blind marine seismic deconvolution using statistical MCMC methods , 2003 .

[4]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[5]  William H. Offenhauser,et al.  Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants , 2012, Emerging infectious diseases.

[6]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[7]  Jérôme Idier,et al.  Sparse Blind Deconvolution Accounting for Time-Shift Ambiguity , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[8]  Michael Buckley,et al.  Regularised shortest-path extraction , 1997, Pattern Recognit. Lett..

[9]  Israel Cohen,et al.  Multichannel blind seismic deconvolution using dynamic programming , 2008, Signal Process..

[10]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[11]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[12]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[13]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[14]  Kjetil F. Kaaresen Evaluation and applications of the iterated window maximization method for sparse deconvolution , 1998, IEEE Trans. Signal Process..

[15]  Israel Cohen,et al.  Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Israel Cohen,et al.  Dynamic Programming For Multichannel Blind Seismic Deconvolution , 2007 .

[17]  Jerry M. Mendel,et al.  A novel approach to seismic signal processing and modeling , 1981 .

[18]  Rong Chen,et al.  Simultaneous wavelet estimation and deconvolution of reflection seismic signals , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[20]  Kjetil F. Kaaresen,et al.  Deconvolution of sparse spike trains by iterated window maximization , 1997, IEEE Trans. Signal Process..

[21]  Igor Popovic,et al.  Applications of Adapted Waveform Analysis For Spectral Feature Extraction And Denoising , 2005 .

[22]  G. Celeux,et al.  Stochastic versions of the em algorithm: an experimental study in the mixture case , 1996 .

[23]  Marc Lavielle,et al.  A stochastic algorithm for parametric and non-parametric estimation in the case of incomplete data , 1995, Signal Process..

[24]  Jean-Yves Tourneret,et al.  Blind Deconvolution of Sparse Pulse Sequences Under a Minimum Distance Constraint: A Partially Collapsed Gibbs Sampler Method , 2012, IEEE Transactions on Signal Processing.

[25]  Jerry M. Mendel,et al.  Maximum-likelihood deconvolution; an optimization theory perspective , 1986 .