Coupled Nonlinear Schrödinger Equations with a Gauge Potential: Existence and Blowup

We study solutions of the Cauchy problem for nonlinear Schrodinger system in with nonlinear coupling and linear coupling modeling synthetic magnetic field in spin-orbit coupled Bose–Einstein condensates. Three main results are presented: a proof of the local existence, a proof of the sufficient condition for the blowup result in finite time for some solutions, and the persistence of the nonlinear dynamics in the limit where the spin-orbit coupling converges to zero.

[1]  B. Simon,et al.  Schrödinger operators with magnetic fields. I. general interactions , 1978 .

[2]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[3]  J. G. Muga,et al.  Collapse of spin-orbit-coupled Bose-Einstein condensates , 2015, 1504.02860.

[4]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[5]  Weizhu Bao,et al.  Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .

[6]  Yanzhi Zhang,et al.  Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation , 2007 .

[7]  V. Konotop,et al.  Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates. , 2014, Physical review letters.

[8]  Guanggan Chen,et al.  Energy criteria of global existence for the coupled nonlinear Schrödinger equations with harmonic potentials , 2008 .

[9]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[10]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[11]  Juncheng Wei,et al.  Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations , 2006 .

[12]  Lluis Torner,et al.  Stabilization of spatiotemporal solitons in Kerr media by dispersive coupling. , 2015, Optics letters.

[13]  Hidetsugu Sakaguchi,et al.  Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[15]  Finite time blow-up for some nonlinear Schro¨dinger equations with an external magnetic filed , 1991 .

[16]  Weizhu Bao,et al.  Ground States and Dynamics of Spin-Orbit-Coupled Bose-Einstein Condensates , 2014, SIAM J. Appl. Math..

[17]  Victor Galitski,et al.  Spin–orbit coupling in quantum gases , 2013, Nature.

[18]  T. Ogawa,et al.  Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem , 1991 .

[19]  V. Pérez-García,et al.  Collapse in coupled nonlinear Schrödinger equations: Sufficient conditions and applications , 2008, 0804.4645.

[20]  B. Simon,et al.  Separation of center of mass in homogeneous magnetic fields , 1978 .

[21]  J Ruseckas,et al.  Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.

[22]  V. Konotop,et al.  Supercritical Blowup in Coupled Parity‐Time‐Symmetric Nonlinear Schrödinger Equations , 2014, 1407.2438.

[23]  B. Simon,et al.  Schrödinger operators with magnetic fields , 1981 .

[24]  A. Jüngel,et al.  BLOW-UP IN TWO-COMPONENT NONLINEAR SCHRÖDINGER SYSTEMS WITH AN EXTERNAL DRIVEN FIELD , 2013 .

[25]  Uniqueness and Inviscid Limits of Solutions for the Complex Ginzburg-Landau Equation in a Two-Dimensional Domain , 2004 .

[26]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.