Using thermochemical treatment for facilitating apatite formation on Ti-Nb-Sn alloys

[1]  Jianzhao Wang,et al.  Bone Material Properties of Human Phalanges Using Vickers Indentation , 2019, Orthopaedic surgery.

[2]  C. Schwandt,et al.  Phase Composition, Microstructure, Corrosion Resistance and Mechanical Properties of Molten Salt Electrochemically Synthesised Ti–Nb–Sn Biomedical Alloys , 2019, MATERIALS TRANSACTIONS.

[3]  S. M. Shariff,et al.  Studying the effect of composition on the in vitro wear behavior and elastic modulus of titanium-niobium-based alloys for biomedical implants , 2018 .

[4]  C. Rodella,et al.  X-ray powder diffraction at the XRD1 beamline at LNLS. , 2016, Journal of synchrotron radiation.

[5]  T. Kokubo,et al.  Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. , 2016, Acta biomaterialia.

[6]  A. A. Coelho,et al.  X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd, Nd)5Si4 compounds , 2016, Powder Diffraction.

[7]  R. Caram,et al.  Application of coupled substrate aging and TiO2 nanotube crystallization heat treatments in cold-rolled Ti–Nb–Sn alloys , 2016, Journal of Materials Science.

[8]  Li-bin Liu,et al.  Experimental Investigation of the Ti-Nb-Sn Isothermal Section at 1173 K , 2016 .

[9]  M. Niinomi,et al.  Biomedical titanium alloys with Young’s moduli close to that of cortical bone , 2016, Regenerative biomaterials.

[10]  E. Itoi,et al.  Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water , 2016, PloS one.

[11]  Q. Wei,et al.  Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength , 2015, Scientific Reports.

[12]  M. Mohammed,et al.  Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review , 2014 .

[13]  S. Semboshi,et al.  Mechanical properties and microstructures of β Ti-25Nb-11Sn ternary alloy for biomedical applications. , 2013, Materials science & engineering. C, Materials for biological applications.

[14]  T. Hanawa Research and development of metals for medical devices based on clinical needs , 2012, Science and technology of advanced materials.

[15]  S. Semboshi,et al.  A new concept of hip joint stem and its fabrication using metastable TiNbSn alloy , 2012 .

[16]  T. Kokubo,et al.  Formation of a bioactive calcium titanate layer on gum metal by chemical treatment , 2012, Journal of Materials Science: Materials in Medicine.

[17]  Takashi Nakamura,et al.  Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment. , 2011, Journal of biomedical materials research. Part A.

[18]  Takashi Nakamura,et al.  Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. , 2010, Acta biomaterialia.

[19]  David J. Mooney,et al.  Inspiration and application in the evolution of biomaterials , 2009, Nature.

[20]  Ashutosh Kumar Singh,et al.  Structure of orthorhombic martensitic phase in binary Ti–Nb alloys , 2009 .

[21]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[22]  F. Svahn,et al.  Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. , 2007, Acta biomaterialia.

[23]  S. Hanada,et al.  Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated , 2007 .

[24]  Gelson Luis Adabo,et al.  Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. , 2006, Brazilian dental journal.

[25]  Y. Mantani,et al.  Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys , 2006 .

[26]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[27]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[28]  K. Asami,et al.  XPS study of corrosion behavior of Ti-18Nb-4Sn shape memory alloy in a 0.05 mass % HCl solution , 2003 .

[29]  H. M. Kim,et al.  TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. , 2001, Journal of biomedical materials research.

[30]  D. Puleo,et al.  Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. , 1996, Biomaterials.

[31]  W. Boettinger,et al.  Phase transformations in the (Ti, Al)3 Nb section of the TiAlNb system—I. Microstructural predictions based on a subgroup relation between phases , 1994 .

[32]  J. Halbritter,et al.  Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces , 1987 .

[33]  M. K. Bahl,et al.  ESCA studies of some niobium compounds , 1974 .

[34]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[35]  A. C. Guastaldi,et al.  Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimentos , 2010 .

[36]  G. Lütjering,et al.  Titanium : Engineering Materials and Processes , 2007 .

[37]  C. Rao,et al.  XPES studies of oxides of second- and third-row transition metals including rare earths , 1980 .