Sodium-Storage Behavior of Exfoliated MoS2 as an Electrode Material for Solid-State Batteries with Na3PS4 as the Solid Electrolyte

MoS2 nanosheets prepared by chemical exfoliation are studied as electrode material for sodium solid-state batteries (Na-SSBs). Sodium thiophosphate (Na3PS4) is used as solid electrolyte and is synt...

[1]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[2]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[3]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[4]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[5]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[6]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[7]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[8]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[9]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[10]  Yunhui Gong,et al.  An All‐Ceramic Solid‐State Rechargeable Na+‐Battery Operated at Intermediate Temperatures , 2014 .

[11]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[12]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[13]  Masahiro Tatsumisago,et al.  X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅6 Na4SiS4 Glass‐Ceramic Electrolytes , 2014 .

[14]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[15]  A. Hayashi,et al.  All-solid-state sodium batteries using amorphous TiS 3 electrode with high capacity , 2015 .

[16]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[17]  M. Wagemaker,et al.  Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries , 2016 .

[18]  Wolfgang G. Zeier,et al.  Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. , 2016, ACS applied materials & interfaces.

[19]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[20]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[21]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[22]  Zachary D. Hood,et al.  An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. , 2016, Angewandte Chemie.

[23]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[24]  A. J. Bhattacharyya,et al.  Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries , 2016 .

[25]  A. Hayashi,et al.  Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries , 2016, Front. Energy Res..

[26]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[27]  P. Adelhelm,et al.  Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications , 2017, Topics in current chemistry.

[28]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[29]  Thorben Krauskopf,et al.  Influence of lattice dynamics on Na+-transport in the solid electrolyte Na3PS4−xSex , 2017 .

[30]  A. Hayashi,et al.  All-Solid-State Na/S Batteries with a Na3PS4 Electrolyte Operating at Room Temperature , 2017 .

[31]  Hanmei Tang,et al.  Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations , 2018 .

[32]  Y. Jung,et al.  Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries , 2018 .

[33]  C. Shi,et al.  Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks for Ultrafast Na Storage , 2018 .

[34]  Zhizhen Zhang,et al.  Na11Sn2PS12: a new solid state sodium superionic conductor , 2018 .

[35]  V. Thangadurai,et al.  Engineering Materials for Progressive All-Solid-State Na Batteries , 2018, ACS Energy Letters.

[36]  Xingguo Qi,et al.  Nanoscaled Na3PS4 Solid Electrolyte for All-Solid-State FeS2/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. , 2018, ACS applied materials & interfaces.

[37]  Linda F. Nazar,et al.  New horizons for inorganic solid state ion conductors , 2018 .

[38]  Lin-wang Wang,et al.  Electrochemical Reaction Mechanism of the MoS2 Electrode in a Lithium-Ion Cell Revealed by in Situ and Operando X-ray Absorption Spectroscopy. , 2018, Nano letters.

[39]  Xiulin Fan,et al.  Long Cycle Life All-Solid-State Sodium Ion Battery. , 2018, ACS Applied Materials and Interfaces.

[40]  Dan Sun,et al.  MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries , 2018 .

[41]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[42]  M. Armand,et al.  Building Better Batteries in the Solid State: A Review , 2019, Materials.

[43]  P. Adelhelm,et al.  The Indium−Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability , 2019, Batteries & Supercaps.

[44]  A. Hayashi,et al.  A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature , 2019, Nature Communications.

[45]  A. Hayashi,et al.  Suspension synthesis of Na3-PS4-Cl solid electrolytes , 2019, Journal of Power Sources.

[46]  Yunhui Huang,et al.  High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. , 2019, ACS applied materials & interfaces.

[47]  P. Adelhelm,et al.  Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes from Bulk Precursors for Sodium‐Ion Batteries , 2019, Advanced Functional Materials.

[48]  Erik A. Wu,et al.  Single-step synthesis of highly conductive Na3PS4 solid electrolyte for sodium all solid-state batteries , 2019, Journal of Power Sources.

[49]  P. Adelhelm,et al.  Exfoliated MoS2 as Electrode for All-Solid-State Rechargeable Lithium-Ion Batteries , 2019, The Journal of Physical Chemistry C.

[50]  K. Tadanaga,et al.  Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery , 2019, Nature Reviews Chemistry.

[51]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[52]  Wolfgang G. Zeier,et al.  How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study , 2020 .