Performance of vertically and obliquely reinforced 1–3 piezoelectric composites for active damping of laminated composite shells

Abstract This paper deals with the analysis of active constrained layer damping (ACLD) of laminated cylindrical composite shells using vertically and obliquely reinforced 1–3 piezoelectric composite materials as the material of the constraining layer of the ACLD treatment. A finite element model has been developed for analyzing the ACLD of laminated symmetric and antisymmetric cross-ply and angle-ply composite shells integrated with the patches of such ACLD treatment. Both in-plane and out-of-plane actuation of the constraining layer of the ACLD treatment has been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the constraining layer is varied in the two mutually orthogonal vertical planes. The analysis revealed that the vertically reinforced 1–3 piezoelectric composites which are in general being used for the distributed sensors can be potentially used for the distributed actuators of high-performance light-weight smart cylindrical shells.

[1]  Bao Tao,et al.  Design and study on a 1–3 anisotropy piezocomposite sensor , 2000 .

[2]  A. Ng,et al.  Actuator Placement Optimization and Adaptive Vibration Control of Plate Smart Structures , 2005 .

[3]  Y. Benveniste,et al.  Uniform fields and universal relations in piezoelectric composites , 1992 .

[4]  Arcangelo Messina,et al.  Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions , 1999 .

[5]  Sathya Hanagud,et al.  OPTIMAL VIBRATION CONTROL BY THE USE OF PIEZOCERAMIC SENSORS AND ACTUATORS , 1992 .

[7]  Roger Stanway,et al.  ACTIVE CONSTRAINED LAYER DAMPING OF CLAMPED-CLAMPED PLATE VIBRATIONS , 2001 .

[8]  M. C. Ray,et al.  Optimal Control of Laminated Shells Using Piezoelectric Sensor and Actuator Layers , 2003 .

[9]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[10]  Liyong Tong,et al.  Vibration Control of Plates Using Discretely Distributed Piezoelectric Quasi-Modal Actuators/Sensors , 2001 .

[11]  M. C. Ray,et al.  On the Use of Vertically Reinforced 1-3 Piezoelectric Composites for Hybrid Damping of Laminated Composite Plates , 2007 .

[12]  B. Agrawal,et al.  Shape control of a beam using piezoelectric actuators , 1999 .

[13]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[14]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Robert L. Clark,et al.  Experiments on Active Control of Plate Vibration Using Piezoelectric Actuators and Polyvinylidene Fluoride (PVDF) Modal Sensors , 1994 .

[16]  L. Tong,et al.  A Micro-Electromechanics Model for the 3-D PFRC Materials , 2002 .

[17]  M. C. Ray,et al.  The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures , 2006 .

[18]  A. Baz,et al.  Optimal vibration control with modal positive position feedback , 1996 .

[19]  G. Hayward,et al.  Design of 1-3 piezocomposite hydrophones using finite element analysis , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  M. C. Ray,et al.  Effective Coefficients of Piezoelectric Fiber-Reinforced Composites , 2003 .

[21]  Amr M. Baz,et al.  OPTIMIZATION OF ENERGY DISSIPATION OF ACTIVE CONSTRAINED LAYER DAMPING TREATMENTS OF PLATES , 1997 .

[22]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[23]  Jacob Aboudi,et al.  Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites , 1998 .

[24]  Amr M. Baz,et al.  Optimum Placement and Control of Active Constrained Layer Damping using Modal Strain Energy Approach , 2002 .

[25]  I. Y. Shen,et al.  Development of Isoparametric, Degenerate Constrained Layer Element for Plate and Shell Structures , 2001 .

[26]  Mustafa Arafa,et al.  Dynamics of active piezoelectric damping composites , 2000 .

[27]  J. Reddy,et al.  Optimal control of thin circular cylindrical laminated composite shells using active constrained layer damping treatment , 2004 .

[28]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[29]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[30]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[31]  B. Azvine,et al.  Use of active constrained-layer damping for controlling resonant vibration , 1995 .

[32]  S. Danforth,et al.  A 3-D Connectivity Model for Effective Piezoelectric Properties of Yarn Composites , 2002 .