Constructions and bounds for mixed-dimension subspace codes

Codes in finite projective spaces equipped with the subspace distance have been proposed for error control in random linear network coding. The resulting so-called \emph{Main Problem of Subspace Coding} is to determine the maximum size $A_q(v,d)$ of a code in $\operatorname{PG}(v-1,\mathbb{F}_q)$ with minimum subspace distance $d$. Here we completely resolve this problem for $d\ge v-1$. For $d=v-2$ we present some improved bounds and determine $A_q(5,3)=2q^3+2$ (all $q$), $A_2(7,5)=34$. We also provide an exposition of the known determination of $A_q(v,2)$, and a table with exact results and bounds for the numbers $A_2(v,d)$, $v\leq 7$.

[1]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[2]  Ning Cai,et al.  Network Error Correction, II: Lower Bounds , 2006, Commun. Inf. Syst..

[3]  Antonio Cossidente,et al.  Optimal subspace codes in PG(4, q) , 2018, ArXiv.

[4]  J. Thas,et al.  General Galois geometries , 1992 .

[5]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[6]  Marshall Hall,et al.  Uniqueness of the projective plane of order eight , 1956 .

[7]  Frank R. Kschischang,et al.  Communication Over Finite-Field Matrix Channels , 2008, IEEE Transactions on Information Theory.

[8]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[9]  R. Yeung,et al.  NETWORK ERROR CORRECTION , PART I : BASIC CONCEPTS AND UPPER BOUNDS , 2006 .

[10]  Sascha Kurz,et al.  Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4 , 2014 .

[11]  Martin Bossert,et al.  Algebraic codes for network coding , 2009, Probl. Inf. Transm..

[12]  Terry Czerwinski,et al.  The Translation Planes of Order Twenty-Five , 1992, J. Comb. Theory, Ser. A.

[13]  Thomas Feulner Canonical Forms and Automorphisms in the Projective Space , 2013, ArXiv.

[14]  Zhen Zhang,et al.  Linear Network Error Correction Coding , 2014, SpringerBriefs in Computer Science.

[15]  U. Dempwolff,et al.  The classification of the translation planes of order 16, I , 1983 .

[16]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[17]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[18]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[19]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[20]  Thomas Honold,et al.  Poster: A new approach to the Main Problem of Subspace Coding , 2014, 9th International Conference on Communications and Networking in China.

[21]  R. Ahlswede,et al.  On error control codes for random network coding , 2009, 2009 Workshop on Network Coding, Theory, and Applications.

[22]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[23]  Thomas Feulner The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes , 2009, Adv. Math. Commun..

[24]  Tuvi Etzion,et al.  Galois geometries and coding theory , 2016, Des. Codes Cryptogr..

[25]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[26]  J. Galambos,et al.  Bonferroni-type inequalities with applications , 1996 .

[27]  Gordon F. Royle,et al.  The translation planes of order 49 , 1995, Des. Codes Cryptogr..

[28]  Ning Cai,et al.  Network error correction , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[29]  Tuvi Etzion,et al.  Problems on q-Analogs in Coding Theory , 2013, ArXiv.

[30]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[31]  Ulrich Dempwolff Translation planes of order 27 , 1994, Des. Codes Cryptogr..

[32]  L. Storme,et al.  Current Research Topics on Galois Geometry , 2011 .

[33]  G. Moorhouse Two-graphs and skew two-graphs in finite geometries , 1995 .

[34]  Arthur Reifart The classification of the translation planes of order 16, II , 1983 .

[35]  Sampo Niskanen,et al.  Cliquer user's guide, version 1.0 , 2003 .

[36]  Sascha Kurz,et al.  Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .

[37]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[38]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[39]  Thomas Honold,et al.  On putative q-analogues of the Fano plane and related combinatorial structures , 2015, 1504.06688.

[40]  Christine Bachoc,et al.  Bounds for projective codes from semidefinite programming , 2012, Adv. Math. Commun..

[41]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[42]  Peter J. Cameron,et al.  Graphs, codes, and designs , 1980 .

[43]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[45]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[46]  Michael Braun,et al.  q‐Analogs of Packing Designs , 2012, 1212.4614.

[47]  Peter J. Cameron,et al.  Designs, graphs, codes, and their links , 1991 .

[48]  Anna-Lena Trautmann,et al.  Isometry and automorphisms of constant dimension codes , 2012, 1205.5465.

[49]  D. J. Kleitman On an extremal property of antichains in partial orders , 1974 .

[50]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..