Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities
暂无分享,去创建一个
Jorge García-Gutiérrez | Eduardo González-Ferreiro | David Miranda | Sandra Buján | Ulises Diéguez-Aranda | E. González-Ferreiro | S. Buján | D. Miranda | Laura Barreiro-Fernández | Jorge García-Gutiérrez | U. Diéguez-Aranda | Laura Barreiro-Fernández
[1] K. Lim,et al. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .
[2] S. Popescu,et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .
[3] D. Donoghue,et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .
[4] J. Reitberger,et al. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .
[5] P. Treitz,et al. Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .
[6] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[7] The influence of post-spacing density of DEMS derived from LIDAR on flood modeling , 2004 .
[8] D. A. Crouse,et al. Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM , 2006 .
[9] Ra Musk,et al. Calibrating LiDAR derived canopy metrics to account for data aquisition parameters and forest condition in Radiata pine plantations , 2007 .
[10] J. Hyyppä,et al. Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .
[11] Daniel Peña Sánchez de Rivera. Regresión y diseño de experimentos , 2002 .
[12] Randolph H. Wynne,et al. Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .
[13] I. Burke,et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .
[14] J. V. van Aardt,et al. Estimating plot-level tree height and volume of Eucalyptus grandis plantations using small-footprint, discrete return lidar data , 2010 .
[15] E. Næsset. Estimating timber volume of forest stands using airborne laser scanner data , 1997 .
[16] R. H. Myers. Classical and modern regression with applications , 1986 .
[17] N. Draper,et al. Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .
[18] S. Popescu. Estimating biomass of individual pine trees using airborne lidar , 2007 .
[19] R. Chris Olsen,et al. Effects of lidar point density on bare earth extraction and DEM creation , 2009, Defense + Commercial Sensing.
[20] John B. Vogler,et al. ESTIMATION OF LAND-USE IN AN URBANIZED LANDSCAPE USING LIDAR INTENSITY DATA: A REGIONAL SCALE APPROACH , 2010 .
[21] Javier Estornell,et al. Estimation of shrub biomass by airborne LiDAR data in small forest stands , 2011 .
[22] Markus Hollaus,et al. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).
[23] W. Wagner,et al. 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .
[24] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[25] E. Næsset. Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .
[26] E. Næsset,et al. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .
[27] R. Nelson,et al. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .
[28] Mattias Magnusson,et al. Evaluation of remote sensing techniques for estimation of forest variables at stand level , 2006 .
[29] Johan E. S. Fransson,et al. Effects on estimation accuracy of forest variables using different pulse density of laser data , 2007 .
[30] E. Næsset,et al. ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .
[31] J. Rosette,et al. Variability of LiDAR volume prediction models for productivity assessment of radiata pine plantations in South Australia , 2008 .
[32] M. Hodgson,et al. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .
[33] William Kruskal,et al. A Nonparametric test for the Several Sample Problem , 1952 .
[34] Nicholas C. Coops,et al. Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .
[35] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[36] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[37] Michael A. Lefsky,et al. Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies , 2007 .
[38] W. Kruskal,et al. Use of Ranks in One-Criterion Variance Analysis , 1952 .
[39] N. Draper,et al. Applied Regression Analysis , 1966 .
[40] R. Lucas,et al. A review of remote sensing technology in support of the Kyoto Protocol , 2003 .
[41] M. Flood,et al. LiDAR remote sensing of forest structure , 2003 .
[42] K. Lim,et al. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .
[43] K. Kraus,et al. Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .
[44] T. Dawson,et al. Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .
[45] C. Pérez-Cruzado,et al. A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain , 2011 .
[46] J. A. Tullis,et al. An Evaluation of Lidar-derived Elevation and Terrain Slope in Leaf-off Conditions , 2005 .
[47] David A. Belsley,et al. Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1991 .
[48] Dafydd Gibbon,et al. 1 User’s guide , 1998 .
[49] Linear Least-Squares Interpolation , 2008 .
[50] R. Wack,et al. FOREST INVENTORY FOR EUCALYPTUS PLANTATIONS BASED ON AIRBORNE LASERSCANNER DATA , 2003 .
[51] Unfccc. Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .
[52] M. B. Wilk,et al. Approximations for the Null Distribution of the W Statistic , 1968 .
[53] R. Dubayah,et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .
[54] N. Pfeifer,et al. Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .
[55] M. Favalli,et al. Lava flow identification and aging by means of lidar intensity: Mount Etna case , 2007 .
[56] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[57] Zhenyu Zhang,et al. LIDAR data reduction for efficient and high quality DEM generation , 2008 .
[58] Nicholas C. Coops,et al. Simulation study for finding optimal lidar acquisition parameters for forest height retrieval , 2005 .
[59] E. Næsset,et al. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .
[60] Michela Robba,et al. Optimizing forest biomass exploitation for energy supply at a regional level , 2004 .
[61] Boris Jutzi,et al. Intensity Normalization by Incidence Angle and Range of Full-Waveform LIDAR Data , 2008 .
[62] David J. Sheskin,et al. Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .
[63] M. Heurich,et al. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests , 2008 .
[64] E. Næsset. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .
[65] E. Næsset,et al. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .
[66] C. Field,et al. Biomass energy: the scale of the potential resource. , 2008, Trends in ecology & evolution.
[67] K. Rennolls,et al. Timber Management-A Quantitative Approach. , 1984 .
[68] J. R. Jensen,et al. Creation of digital terrain models using an adaptive lidar vegetation point removal process , 2002 .
[69] Michael E. Hodgson,et al. Impact of Lidar Nominal Post-spacing on DEM Accuracy and Flood Zone Delineation , 2007 .
[70] F. M. Danson,et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .
[71] Eduardo González-Ferreiro,et al. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .
[72] J. Hyyppä,et al. Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .
[73] Robert J. McGaughey,et al. FOREST MEASUREMENT AND MONITORING USING HIGH-RESOLUTION AIRBORNE LIDAR , 2006 .
[74] Boris Jutzi,et al. Investigations on surface reflection models for intensity normalization in airborne laser scanning (ALS) data , 2010 .