On the regularization of projection methods for solving III-posed problems

SummaryIn this paper we consider a class of regularization methods for a discretized version of an operator equation (which includes the case that the problem is ill-posed) with approximately given right-hand side. We propose an a priori- as well as an a posteriori parameter choice method which is similar to the discrepancy principle of Ivanov-Morozov. From results on fractional powers of selfadjoint operators we obtain convergence rates, which are (in many cases) the same for both parameter choices.