Study on crack growth and fatigue life in TC6 titanium alloy by integrated phase proportion and grain size modeling

[1]  Jianzhong Zhou,et al.  Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy , 2019, Optics & Laser Technology.

[2]  D. Kent,et al.  Microstructure, phase composition and mechanical properties of new, low cost Ti-Mn-Nb alloys for biomedical applications , 2019, Journal of Alloys and Compounds.

[3]  Yunzhi Wang,et al.  Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase-field modeling , 2019, Acta Materialia.

[4]  Jianqiu Zhou,et al.  The quantitative understanding on the influence of α″ phase on mechanical behavior of Ti-Nb-Ta-Zr-O alloy , 2018, Journal of Alloys and Compounds.

[5]  Jianzhong Zhou,et al.  Investigation on mechanical properties and microstructural evolution of TC6 titanium alloy subjected to laser peening at cryogenic temperature , 2018, Materials Science and Engineering: A.

[6]  P. Dey,et al.  Effect of Martensite Volume Fraction on Strain Partitioning Behavior of Dual Phase Steel , 2018, Physical Mesomechanics.

[7]  Jianzhong Zhou,et al.  Influence of cryogenic treatment prior to laser peening on mechanical properties and microstructural characteristics of TC6 titanium alloy , 2018 .

[8]  S. Swaroop,et al.  Deformation of single and multiple laser peened TC6 titanium alloy , 2018 .

[9]  Fu-chi Wang,et al.  Correlation between dislocation-density-based strain hardening and microstructural evolution in dual phase TC6 titanium alloy , 2018 .

[10]  Z. Zhang,et al.  Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement , 2018 .

[11]  A. Hodge,et al.  Exploring the microstructural evolution of Hf-Ti: From nanometallic multilayers to nanostructures , 2018 .

[12]  Jianqiu Zhou,et al.  Tungsten content and grain boundary misorientation angle effect on crack blunting in nanocrystalline Ni-W alloy , 2017, Journal of Nanoparticle Research.

[13]  Fang Wang,et al.  Molecular dynamics modeling of crack propagation in titanium alloys by using an experiment-based Monte Carlo model , 2017 .

[14]  Yang Wang,et al.  Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films , 2017 .

[15]  Hongmei Zhang,et al.  Microstructural characterization of an α+β type Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy during recrystallization annealing , 2017 .

[16]  Jianqiu Zhou,et al.  Effect of coherent twin boundary in nanotwinned materials on fatigue crack growth based on dislocation emission , 2017 .

[17]  Y. Ivanisenko,et al.  Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure , 2017 .

[18]  F. Dunne,et al.  Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue , 2017 .

[19]  Hongmei Zhang,et al.  Three-dimensional microstructure-based micromechanical modeling for TC6 titanium alloy , 2017 .

[20]  Yang Wang,et al.  Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary , 2017 .

[21]  Q. Fan,et al.  Elastic plastic deformation of TC6 titanium alloy analyzed by in-situ synchrotron based X-ray diffraction and microstructure based finite element modeling , 2016 .

[22]  Q. Fan,et al.  Determination of the single-phase constitutive relations of α/β dual phase TC6 titanium alloy , 2016 .

[23]  J. Chen,et al.  Microstructure and tensile properties of nanocrystalline (FeNiCoCu)1−xTixAlx high entropy alloys processed by high pressure torsion , 2016 .

[24]  Jianqiu Zhou,et al.  Effect of grain size and misorientation angle on fatigue crack growth of nanocrystalline materials , 2016 .

[25]  О. Herasymchuk,et al.  Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude , 2016 .

[26]  O. Umezawa,et al.  Evaluation of Fatigue Crack Growth in α-Titanium Alloys☆ , 2016 .

[27]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[28]  H. Sehitoglu,et al.  Critical stress for the bcc–hcp martensite nucleation in Ti–6.25at.%Ta and Ti–6.25at.%Nb alloys , 2016 .

[29]  Z. Fu,et al.  Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering , 2013 .

[30]  Liu Lin The effects of proportion of α phase and β phase on mechanical properties of TC6 titanium alloy , 2012 .

[31]  F. Prima,et al.  High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor , 2010 .

[32]  H. Cai,et al.  High temperature deformation behavior of the TC6 titanium alloy under the uniform DC electric field , 2010 .

[33]  Minsheng Huang,et al.  Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect , 2009 .

[34]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[35]  C. Koch,et al.  Structural nanocrystalline materials: an overview , 2007 .

[36]  F. Guillemot,et al.  Design of new titanium alloys for orthopaedic applications , 2006, Medical and Biological Engineering and Computing.

[37]  Z. Ren,et al.  Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals , 2004 .