Modelos estatísticos indicadores de comportamentos associados a bem-estar térmico para matrizes pesadas

The study of female broiler breeders is of great importance for the country as poultry production is one of the largest export items, and Brazil is the second largest broiler meat exporter. Animal behavior is known as a response to the effect of several interaction factors among them the environment. In this way the internal housing environment is an element that gives hints regarding to the bird’s thermal comfort. Female broiler breeder behavior, expresses in form of specific pattern the bird’s health and welfare. This research had the objective of applying predictive statistical models through the use of simulation, presenting animal comfort scenarios facing distinct environmental conditions. The research was developed with data collected in a controlled environment using Hybro - PG® breeding submitted to distinct levels of temperature, three distinct types of standard ration and age. Descriptive and exploratory analysis were proceeded, and afterwards the modeling process using the Generalized Estimation Equation (GEE). The research allowed the development of the thermal comfort indicators by statistical model equations of predicting female broiler breeder behavior under distinct studied scenarios.

[1]  Irenilza de Alencar Nääs,et al.  Estimativa do padrão de preferência térmica de matrizes pesadas (frango de corte) , 2007 .

[2]  I. Naas Modelo estatistico para predição de bem-estar de reprodutoras de frango de corte baseado em dados de ambiente e analise do comportamento , 2006 .

[3]  W. Muir,et al.  The effects of genetic selection for survivability and productivity on chicken physiological homeostasis , 2005 .

[4]  Danilo Florentino Pereira,et al.  Indicadores de bem-estar baseados em reações comportamentais de matrizes pesadas , 2005 .

[5]  Irenilza de Alencar Nääs,et al.  Estimativa das condições de conforto térmico para avicultura de postura usando a teoria dos conjuntos Fuzzy , 2005 .

[6]  Wayne Woldt,et al.  Evaluating Modelling Techniques for Cattle Heat Stress Prediction , 2005 .

[7]  J. Escós,et al.  Complexity of behavioural sequences and their relation to stress conditions in chickens (Gallus gallus domesticus): a non-invasive technique to evaluate animal welfare , 2004 .

[8]  R. C. Newberry,et al.  Decreasing aggression with increasing group size in young domestic fowl , 2003 .

[9]  Edward C. Chao,et al.  Generalized Estimating Equations , 2003, Technometrics.

[10]  E. Russek-Cohen,et al.  Reproductive and aggressive behavior in male broiler breeders with varying fertility levels , 2003 .

[11]  J. Faure,et al.  Effects of increasing environmental complexity on the physical activity of broiler chickens , 2002 .

[12]  Danilo Florentino Pereira,et al.  Avaliação do comportamento individual de matrizes pesadas (frando de corte) em função do ambiente e identificação da temperatura critica maxima , 2002 .

[13]  John A. Marchant,et al.  Evaluation of an imaging sensor for detecting vegetation using different waveband combinations , 2001 .

[14]  E. Campos O Comportamento das Aves , 2000 .

[15]  P. Hocking,et al.  Behavioural comparison of layer and broiler fowl: measuring fear responses , 1996 .

[16]  R. Teeter,et al.  Broiler management during acute heat stress , 1996 .

[17]  Stanley E. Curtis,et al.  Environmental Management in Animal Agriculture , 1983 .

[18]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[19]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[20]  Danilo Florentino Pereira Metodologia para estimativa de bem-estar de matrizes de frango de corte utilizando monitoramento digital e construção de modelos de simulação , 2003 .

[21]  A. R. El Boushy,et al.  Eggshell strength: The causes of egg breakage in relation to nutrition, management and environment. A Part one , 1985 .

[22]  Merle L. Esmay,et al.  Principles of animal environment , 1978 .