Global existence and uniqueness of Schrödinger maps in dimensions d... 4

Abstract In dimensions d ⩾ 4 , we prove that the Schrodinger map initial-value problem { ∂ t s = s × Δ s on R d × R ; s ( 0 ) = s 0 admits a unique solution s : R d × R → S 2 ↪ R 3 , s ∈ C ( R : H Q ∞ ) , provided that s 0 ∈ H Q ∞ and ‖ s 0 − Q ‖ H ˙ d / 2 ≪ 1 , where Q ∈ S 2 .

[1]  Karen K. Uhlenbeck,et al.  Erratum: On Schrödinger maps , 2004 .

[2]  I. Bejenaru,et al.  On Schrödinger maps , 2008 .

[3]  J. Krieger GLOBAL REGULARITY OF WAVE MAPS FROM , 2006 .

[4]  Sergiu Klainerman,et al.  Remark on the optimal regularity for equations of wave maps type , 1997 .

[5]  Ding Weiyue Wang Youde,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[6]  Carlos Kenig,et al.  Global well-posedness of the Benjamin–Ono equation in low-regularity spaces , 2005 .

[7]  Luis Vega,et al.  Schrodinger Maps and Their Associated Frame Systems , 2006 .

[8]  Jalal Shatah,et al.  The Cauchy problem for wave maps , 2002 .

[9]  J. Kato,et al.  Existence and uniqueness of the solution to the modified Schrödinger map , 2005 .

[10]  Quadratic Nonlinear Derivative Schr\"odiger Equations - Part 1 , 2005, math/0512041.

[11]  Daniel Tataru,et al.  Rough solutions for the wave maps equation , 2005 .

[12]  A. Soyeur The Cauchy problem for the Ishimori equations , 1992 .

[13]  Karen K. Uhlenbeck,et al.  On the well-posedness of the wave map problem in high dimensions , 2001, math/0109212.

[14]  D. Tataru Local and global results for wave maps I , 1998 .

[15]  C. Kenig,et al.  Low-regularity Schrödinger maps , 2006, Differential and Integral Equations.

[16]  C. Kenig,et al.  The Cauchy problem for the hyperbolic–elliptic Ishimori system and Schrödinger maps , 2005 .

[17]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[18]  Gigliola Staffilani,et al.  The Cauchy problem for Schrodinger flows into Kahler manifolds , 2005, math/0511701.

[19]  Terence Tao Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .

[20]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[21]  C. Kenig,et al.  Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3 , 2007 .

[22]  D. Tataru On global existence and scattering for the wave maps equation , 2001 .

[23]  D. Christodoulou,et al.  On the regularity of spherically symmetric wave maps , 1993 .

[24]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[25]  H. McGahagan An Approximation Scheme for Schrödinger Maps , 2007 .

[26]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .