Tunable Anderson localization of dark states

Jan David Brehm, Paul Pöpperl, 3 Alexander D. Mirlin, 3, 4 Alexander Shnirman, 3 Alexander Stehli, Hannes Rotzinger, 3 and Alexey V. Ustinov 3, 5, 6 Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany Landau Institute for Theoretical Physics, 119334 Moscow, Russia National University of Science and Technology MISIS, Moscow 119049, Russia Russian Quantum Center, Skolkovo, Moscow 143025, Russia (Dated: October 14, 2021)

[1]  Jian-Wei Pan,et al.  Observation of Strong and Weak Thermalization in a Superconducting Quantum Processor. , 2021, Physical review letters.

[2]  J. Brehm,et al.  Waveguide bandgap engineering with an array of superconducting qubits , 2020, npj Quantum Materials.

[3]  O. Painter,et al.  Quantum Electrodynamics in a Topological Waveguide , 2020, Physical Review X.

[4]  H. Fan,et al.  Observation of energy-resolved many-body localization , 2019, 1912.02818.

[5]  Y. Kivshar,et al.  Photon-Mediated Localization in Two-Level Qubit Arrays. , 2019, Physical review letters.

[6]  O. Painter,et al.  Cavity quantum electrodynamics with atom-like mirrors , 2019, Nature.

[7]  K. Mølmer,et al.  Theory of Subradiant States of a One-Dimensional Two-Level Atom Chain. , 2018, Physical review letters.

[8]  M. Weides,et al.  Probing the Tavis-Cummings Level Splitting with Intermediate-Scale Superconducting Circuits , 2018, 1810.00652.

[9]  O. Painter,et al.  Superconducting metamaterials for waveguide quantum electrodynamics , 2018, Nature Communications.

[10]  H. Fan,et al.  Emulating Many-Body Localization with a Superconducting Quantum Processor. , 2017, Physical review letters.

[11]  H. Neven,et al.  Spectroscopic signatures of localization with interacting photons in superconducting qubits , 2017, Science.

[12]  J. Schotland,et al.  Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics , 2017, 1709.04641.

[13]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[14]  Dmitry A. Abanin,et al.  Recent progress in many‐body localization , 2017, 1705.09103.

[15]  H. Kimble,et al.  Exponential Improvement in Photon Storage Fidelities Using Subradiance and “Selective Radiance” in Atomic Arrays , 2017, 1703.03382.

[16]  V. Sandoghdar,et al.  Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide , 2016 .

[17]  J. Ignacio Cirac,et al.  Multiphoton-scattering theory and generalized master equations , 2015, 1507.08699.

[18]  Marcel Filoche,et al.  Effective Confining Potential of Quantum States in Disordered Media. , 2015, Physical review letters.

[19]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[20]  J. Ignacio Cirac,et al.  Quantum dynamics of propagating photons with strong interactions: a generalized input–output formalism , 2015, 1501.04427.

[21]  Ehud Altman,et al.  Universal dynamics and renormalization in many body localized systems , 2014, 1408.2834.

[22]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[23]  Barry C. Sanders,et al.  Photon-Mediated Interactions Between Distant Artificial Atoms , 2013, Science.

[24]  Barry C. Sanders,et al.  Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms , 2013, 1305.7135.

[25]  Miao Gao,et al.  Electronic transport of a large scale system studied by renormalized transfer matrix method: Application to armchair graphene nanoribbons between quantum wires , 2013, Comput. Phys. Commun..

[26]  T. Palomaki,et al.  Microwave quantum optics with an artificial atom in one-dimensional open space , 2012, 1210.4303.

[27]  S. Mayboroda,et al.  Universal mechanism for Anderson and weak localization , 2012, Proceedings of the National Academy of Sciences.

[28]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[29]  D. Witthaut,et al.  Photon scattering by a three-level emitter in a one-dimensional waveguide , 2010, 1001.0975.

[30]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[31]  Georg Maret,et al.  Observation of the critical regime near Anderson localization of light. , 2005, Physical review letters.

[32]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[33]  A. Mirlin,et al.  Interacting electrons in disordered wires: Anderson localization and low-T transport. , 2005, Physical review letters.

[34]  P. Khomyakov,et al.  Conductance calculations for quantum wires and interfaces: Mode matching and Green's functions , 2005, cond-mat/0501609.

[35]  A. Genack,et al.  Statistical signatures of photon localization , 2000, Nature.

[36]  D. Wiersma,et al.  Localization of light in a disordered medium , 1997, Nature.

[37]  Graham,et al.  Experimental evidence for localization of acoustic waves in three dimensions. , 1990, Physical review letters.

[38]  A. MacKinnon,et al.  The scaling theory of electrons in disordered solids: Additional numerical results , 1983 .

[39]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[40]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .