Riemannian Optimal Control and Model Matching of Linear Port-Hamiltonian Systems

This paper presents a unified controller design method for $H^2$ optimal control and model matching problems of linear port-Hamiltonian systems. The controller design problems are formulated as optimization problems on the product manifold of the set of skew symmetric matrices, the manifold of the symmetric positive definite matrices, and Euclidean space. A Riemannian metric is chosen for the manifold in such a manner that the manifold is geodesically complete, i.e., the domain of the exponential map is the whole tangent space for every point on the manifold. In order to solve these problems, the Riemannian gradients of the objective functions are derived, and these gradients are used to develop a Riemannian steepest descent method on the product manifold. The geodesic completeness of the manifold guarantees that all points generated by the steepest descent method are on the manifold. Numerical experiments illustrate that our method is able to solve the two specified problems.

[1]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[2]  Hiroyuki Sato,et al.  Structure-Preserving $H^2$ Optimal Model Reduction Based on the Riemannian Trust-Region Method , 2018, IEEE Transactions on Automatic Control.

[3]  Arjan van der Schaft,et al.  An LMI approach to stabilization of linear port-controlled Hamiltonian systems , 2002, Syst. Control. Lett..

[4]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[5]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[6]  Arjan van der Schaft,et al.  Structure-preserving model reduction of complex physical systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[7]  Frank Allgöwer,et al.  An introduction to interconnection and damping assignment passivity-based control in process engineering , 2009 .

[8]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[9]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[10]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[11]  Paul Kotyczka Discretized models for networks of distributed parameter port-Hamiltonian systems , 2013 .

[12]  Michel Verhaegen,et al.  Port-Hamiltonian description and analysis of the LuGre friction model , 2011, Simul. Model. Pract. Theory.

[13]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[14]  A. J. van der Schaft,et al.  Port-controlled Hamiltonian Systems:Modelling Origins and System-Theoretic Properties , 1992 .

[15]  Joachim Deutscher,et al.  Stability and passivity preserving Petrov-Galerkin approximation of linear infinite-dimensional systems , 2012, Autom..

[16]  Daniel U. Campos-Delgado,et al.  H∞ strong stabilization , 2001, IEEE Trans. Autom. Control..

[17]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[18]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[19]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[20]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .