On the Sampling Frequency of Human Mobility

In this paper, we aim at answering the question "at what frequency should one sample individual human movements so that they can be reconstructed from the collected samples with minimum loss of information?". Our quest for a response unveils (i) seemingly universal spectral properties of human mobility, and (ii) a linear scaling law of the localization error with respect to the sampling interval. We conduct analyses using fine-grained GPS trajectories of 119 users worldwide. Our findings have potential applications in ubiquitous computing and mobile service design, in terms of energy efficiency, location-based service operations, active probing of subscribers' positions in mobile networks and trajectory data compression.

[1]  Balázs Csanád Csáji,et al.  Exploring the Mobility of Mobile Phone Users , 2012, ArXiv.

[2]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[3]  Lukas Kencl,et al.  Performance study of active tracking in a cellular network using a modular signaling platform , 2010, MobiSys '10.

[4]  Cheng Long,et al.  Direction-Preserving Trajectory Simplification , 2013, Proc. VLDB Endow..

[5]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[6]  Jie Gao,et al.  Persistence based online signal and trajectory simplification for mobile devices , 2014, SIGSPATIAL/GIS.

[7]  Mikkel Baun Kjærgaard,et al.  Energy-efficient trajectory tracking for mobile devices , 2011, MobiSys '11.

[8]  Nenghai Yu,et al.  Trajectory simplification method for location-based social networking services , 2009, LBSN '09.

[9]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[10]  Wei-Ying Ma,et al.  Understanding mobility based on GPS data , 2008, UbiComp.

[11]  Young-Joo Suh,et al.  GPS tethering for energy conservation1 , 2015, 2015 IEEE Wireless Communications and Networking Conference (WCNC).

[12]  Lixin Gao,et al.  Profiling users in a 3g network using hourglass co-clustering , 2010, MobiCom.

[13]  Bernhard Mitschang,et al.  Usability analysis of compression algorithms for position data streams , 2010, GIS '10.

[14]  Ouri Wolfson,et al.  On-line data reduction and the quality of history in moving objects databases , 2006, MobiDE '06.

[15]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[16]  Pierre-François Marteau,et al.  Speeding up simplification of polygonal curves using nested approximations , 2007, Pattern Analysis and Applications.

[17]  Aline Carneiro Viana,et al.  From routine to network deployment for data offloading in metropolitan areas , 2014, 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).

[18]  Ramesh Govindan,et al.  Energy-efficient positioning for smartphones using Cell-ID sequence matching , 2011, MobiSys '11.

[19]  Basile Chaix,et al.  Detecting activity locations from raw GPS data: a novel kernel-based algorithm , 2013, International Journal of Health Geographics.

[20]  L. Venkata Subramaniam,et al.  Mining GPS data to determine interesting locations , 2011, IIWeb '11.

[21]  S. S. Ravi,et al.  Algorithms for compressing GPS trajectory data: an empirical evaluation , 2010, GIS '10.

[22]  José Ignacio Alvarez-Hamelin,et al.  On the regularity of human mobility , 2016, Pervasive Mob. Comput..

[23]  Frank Dürr,et al.  Online trajectory data reduction using connection-preserving dead reckoning , 2008, MobiQuitous.

[24]  Pasi Fränti,et al.  A Fast $O(N)$ Multiresolution Polygonal Approximation Algorithm for GPS Trajectory Simplification , 2012, IEEE Transactions on Image Processing.

[25]  Vijay Erramilli,et al.  Is there a case for mobile phone content pre-staging? , 2013, CoNEXT.

[26]  Silvia Giordano,et al.  Using barometric pressure data to recognize vertical displacement activities on smartphones , 2016, Comput. Commun..

[27]  A. Liu,et al.  Characterizing and modeling internet traffic dynamics of cellular devices , 2011, PERV.