Axiomatizations of Team Logics

Abstract In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(∼) of Vaananen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion. As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.

[1]  Lauri Hella,et al.  The expressive power of modal logic with inclusion atoms , 2015, GandALF.

[2]  Fan Yang,et al.  Propositional logics of dependence , 2014, Ann. Pure Appl. Log..

[3]  Julian-Steffen Müller,et al.  A Van Benthem Theorem for Modal Team Semantics , 2015, CSL.

[4]  Fan Yang Modal dependence logics: axiomatizations and model-theoretic properties , 2017, Log. J. IGPL.

[5]  Jouko Väänänen,et al.  Modal Dependence Logic , 2008 .

[6]  Jonni Virtema,et al.  Axiomatizing Propositional Dependence Logics , 2015, CSL.

[7]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[8]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2009, WoLLIC.

[9]  Fan Yang,et al.  Propositional team logics , 2016, Ann. Pure Appl. Log..

[10]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[11]  Pietro Galliani On Strongly First-Order Dependencies , 2016, Dependence Logic.

[12]  Johannes Ebbing,et al.  Extended Modal Dependence Logic , 2013, WoLLIC.

[13]  Fan Yang,et al.  Negation and Partial Axiomatizations of Dependence and Independence Logic Revisited , 2016, WoLLIC.

[14]  Juha Kontinen,et al.  Axiomatizing first order consequences in dependence logic , 2012, Ann. Pure Appl. Log..

[15]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[16]  Melvin Fitting,et al.  Modal proof theory , 2007, Handbook of Modal Logic.

[17]  Lauri Hella,et al.  Modal Inclusion Logic: Being Lax is Simpler than Being Strict , 2015, MFCS.

[18]  Julian-Steffen Müller,et al.  Modal Independence Logic , 2014, Advances in Modal Logic.

[19]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[20]  Miika Hannula Validity and Entailment in Modal and Propositional Dependence Logics , 2017, CSL.

[21]  Martin Lück,et al.  Axiomatizations for Propositional and Modal Team Logic , 2016, CSL.

[22]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[23]  Raul Hakli,et al.  Does the deduction theorem fail for modal logic? , 2011, Synthese.

[24]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[25]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[26]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[27]  Till Mossakowski,et al.  On Inconsistency and Unsatisfiability , 2015, Int. J. Softw. Informatics.

[28]  Jonni Virtema,et al.  On Quantified Propositional Logics and the Exponential Time Hierarchy , 2016, GandALF.

[29]  Jonni Virtema,et al.  Complexity of Propositional Independence and Inclusion Logic , 2015, MFCS.