Experimental Comparison of Continuous and Discrete Tangent Estimators Along Digital Curves

Estimating the geometry of a digital shape or contour is an important task in many image analysis applications. This paper proposes an in-depth experimental comparison between various continuous tangent estimators and a representative digital tangent estimator. The continuous estimators belong to two standard approximation methods: least square fitting and gaussian smoothing. The digital estimator is based on the extraction of maximal digital straight segments [9,10]. The comprehensive comparison takes into account objective criteria such as isotropy and multigrid convergence. Experiments underline that the proposed digital estimator addresses many of the proposed objective criteria and that it is in general as good - if not better - than continuous methods.

[1]  Reinhard Klette,et al.  A Comparative Evaluation of Length Estimators of Digital Curves , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Mohamed Tajine,et al.  On Local Definitions of Length of Digital Curves , 2003, DGCI.

[4]  François de Vieilleville,et al.  Analysis and Comparative Evaluation of Discrete Tangent Estimators , 2005, DGCI.

[5]  Laure Tougne,et al.  Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.

[6]  François de Vieilleville,et al.  Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..

[7]  Thomas Lewiner,et al.  Curvature and torsion estimators based on parametric curve fitting , 2005, Comput. Graph..

[8]  Isabelle Debled-Rennesson,et al.  Optimal blurred segments decomposition of noisy shapes in linear time , 2006, Comput. Graph..

[9]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[10]  Bimal Kumar Ray,et al.  ACORD--an adaptive corner detector for planar curves , 2003, Pattern Recognit..

[11]  Azriel Rosenfeld,et al.  Well-Composed Sets , 1995, Comput. Vis. Image Underst..

[12]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[13]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[14]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[15]  Christopher Conrad,et al.  Preserving Topology by a Digitization Process , 1998, Journal of Mathematical Imaging and Vision.

[16]  Anne Vialard Geometrical parameters extraction from discrete paths , 1996, DGCI.

[17]  Antal Balog,et al.  On the convex hull of the integer points in a disc , 1990, SCG '91.

[18]  François de Vieilleville,et al.  Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators , 2007, Journal of Mathematical Imaging and Vision.

[19]  Reinhard Klette,et al.  On Discrete Moments of Unbounded Order , 2006, DGCI.

[20]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..