Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.

Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.

[1]  F. G. Torres,et al.  Biocompatibility of Bacterial Cellulose Based Biomaterials , 2012, Journal of functional biomaterials.

[2]  T. Thundat,et al.  Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors , 2017, Nano Research.

[3]  Zhenqiang Ma,et al.  Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. , 2015, ACS applied materials & interfaces.

[4]  Weihua Tang,et al.  Bacterial Cellulose Nanofiber-Supported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes , 2012 .

[5]  Haipeng Yu,et al.  Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process , 2011 .

[6]  Zhen-Yu Wu,et al.  Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels , 2014, Nano Research.

[7]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[8]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[9]  Youssef Habibi,et al.  Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers , 2009 .

[10]  Mustafa Balat,et al.  Biomass Energy in the World, Use of Biomass and Potential Trends , 2005 .

[11]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[12]  Ichiro Sakurada,et al.  Experimental determination of the elastic modulus of crystalline regions in oriented polymers , 1962 .

[13]  Huajian Gao,et al.  Ultrasonic technique for extracting nanofibers from nature materials , 2007 .

[14]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[15]  Weihua Tang,et al.  Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors , 2015 .

[16]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[17]  Francisco del Monte,et al.  Sustainable carbon materials. , 2015, Chemical Society reviews.

[18]  Maria Strømme,et al.  High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors , 2014 .

[19]  A. Yu,et al.  Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors , 2014 .

[20]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[21]  Y. Bando,et al.  3D network of cellulose-based energy storage devices and related emerging applications , 2017 .

[22]  Jie Xu,et al.  Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes , 2016, Cellulose.

[23]  Lina Ma,et al.  Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors , 2016 .

[24]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[25]  Julien Bras,et al.  Use of nanocellulose in printed electronics: a review. , 2016, Nanoscale.

[26]  S. Eichhorn,et al.  Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers , 2013, ACS applied materials & interfaces.

[27]  Jaehwan Kim,et al.  Review of nanocellulose for sustainable future materials , 2015, International Journal of Precision Engineering and Manufacturing-Green Technology.

[28]  T. Heinze,et al.  Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. , 2008, Biomacromolecules.

[29]  Lars Wågberg,et al.  Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties , 2013 .

[30]  H. Bai,et al.  Polymeric nanoporous materials fabricated with supercritical CO2 and CO2-expanded liquids. , 2014, Chemical Society reviews.

[31]  A. Varma,et al.  Functional nanoparticles obtained from cellulose: engineering the shape and size of 6-carboxycellulose. , 2013, Chemical communications.

[32]  Zhiyong Cai,et al.  Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials , 2016 .

[33]  Yan Yu,et al.  Sodium‐Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual‐Doping , 2017, Advanced science.

[34]  Rongming Wang,et al.  Freestanding and Sandwich‐Structured Electrode Material with High Areal Mass Loading for Long‐Life Lithium–Sulfur Batteries , 2017 .

[35]  Yuanyuan Song,et al.  Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[36]  J. Simonsen,et al.  Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries , 2013 .

[37]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[38]  Xuan Yang,et al.  Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials , 2015, Advanced materials.

[39]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[40]  Bo Chen,et al.  Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer , 2018 .

[41]  M. Nogi,et al.  Optically transparent composites reinforced with plant fiber-based nanofibers , 2005 .

[42]  Hiroyuki Yano,et al.  Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers , 2005 .

[43]  Feijun Wang,et al.  Cellulose nanofiber–graphene all solid-state flexible supercapacitors , 2013 .

[44]  Sukho Park,et al.  Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network , 2016 .

[45]  A. Varma,et al.  A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. , 2017, International journal of biological macromolecules.

[46]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[47]  Nathan S. Lewis,et al.  Deconstructing Biomass [part of The frontiers of energy] , 2016 .

[48]  Husam N. Alshareef,et al.  Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalyst‐Free Synthesis and its Application in Energy Storage Devices , 2015 .

[49]  D. Fang,et al.  Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode , 2013 .

[50]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[51]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[52]  Guangyuan Zheng,et al.  Silicon-conductive nanopaper for Li-ion batteries , 2013 .

[53]  Zhian Zhang,et al.  Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries , 2015 .

[54]  Xudong Wang,et al.  Cellulose-Based Nanomaterials for Energy Applications. , 2017, Small.

[55]  Y. Miao,et al.  Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode. , 2016, Small.

[56]  Yan Song,et al.  Activated pyrolysed bacterial cellulose as electrodes for supercapacitors , 2016, Science China Chemistry.

[57]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[58]  Wei Wang,et al.  Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries , 2015 .

[59]  Bo-Yeong Kim,et al.  All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. , 2012, ACS nano.

[60]  Carlos Alemán,et al.  Powering the future: application of cellulose-based materials for supercapacitors , 2016 .

[61]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[62]  Hai-Wei Liang,et al.  Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose , 2013 .

[63]  Wei Liu,et al.  Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors , 2016 .

[64]  Bin Wang,et al.  Bacterial Cellulose : A Versatile Support for Lithium Ion Battery Anode Materials , 2013 .

[65]  Weihua Tang,et al.  Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors , 2013 .

[66]  Jing Zhang,et al.  Paper‐Based Electrodes for Flexible Energy Storage Devices , 2017, Advanced science.

[67]  Sang-Young Lee,et al.  All-inkjet-printed, solid-state flexible supercapacitors on paper , 2016 .

[68]  M. Titirici,et al.  Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries , 2014 .

[69]  K. Uetani,et al.  Individual cotton cellulose nanofibers: pretreatment and fibrillation technique , 2014, Cellulose.

[70]  Chun‐Sing Lee,et al.  In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries , 2016 .

[71]  Maria Strømme,et al.  Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties , 2012 .

[72]  Masaya Nogi,et al.  Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry , 2008 .

[73]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[74]  Hong Wang,et al.  Electrolyte design strategies and research progress for room-temperature sodium-ion batteries , 2017 .

[75]  Ziyin Lin,et al.  Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors , 2014 .

[76]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[77]  E. Hellén,et al.  Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors , 2015, Electronic Materials Letters.

[78]  A. Varma,et al.  Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. , 2014, Carbohydrate polymers.

[79]  Zhu Zhu,et al.  Highly conductive and stretchable conductors fabricated from bacterial cellulose , 2012 .

[80]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[81]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[82]  Fang Wang,et al.  Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: large areal mass exhibits excellent areal capacitance , 2016 .

[83]  Alain Dufresne,et al.  Nanocellulose: a new ageless bionanomaterial , 2013 .

[84]  Masato Yoshida,et al.  Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid , 2009, Journal of Wood Science.

[85]  Tianxi Liu,et al.  Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. , 2017, Nanoscale.

[86]  J. Clark,et al.  Always look on the "light" side of life: sustainable carbon aerogels. , 2014, ChemSusChem.

[87]  L. Nyholm,et al.  Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes , 2014 .

[88]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[89]  A. Varma,et al.  Facile Synthesis of Unique Cellulose Triacetate Based Flexible and High Performance Gel Polymer Electrolyte for Lithium Ion Batteries. , 2017, ACS applied materials & interfaces.

[90]  W. Luo,et al.  Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries , 2017 .

[91]  J. Wan,et al.  Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[92]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[93]  Claudio Gerbaldi,et al.  Cellulose-based Li-ion batteries: a review , 2013, Cellulose.

[94]  J. Juuti,et al.  Cellulose Nanofibril Film as a Piezoelectric Sensor Material. , 2016, ACS applied materials & interfaces.

[95]  Sun-Young Lee,et al.  Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries , 2012 .

[96]  B. Rånby Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles , 1951 .

[97]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[98]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[99]  S. Kalia,et al.  Nanofibrillated cellulose: surface modification and potential applications , 2013, Colloid and Polymer Science.

[100]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[101]  Y. Gogotsi What nano can do for energy storage. , 2014, ACS nano.

[102]  Xiaodong Chen,et al.  Rational material design for ultrafast rechargeable lithium-ion batteries. , 2015, Chemical Society reviews.

[103]  Yudong Huang,et al.  Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. , 2016, ACS applied materials & interfaces.

[104]  Siqun Wang,et al.  Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication , 2009 .

[105]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[106]  Yan Yu,et al.  Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network. , 2016, Small.

[107]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[108]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[109]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[110]  A. Yu,et al.  Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications , 2014 .

[111]  Shuhong Yu,et al.  Three‐Dimensional Heteroatom‐Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors , 2014 .

[112]  K. Uetani,et al.  Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as High‐Performance Absorption Materials , 2016 .

[113]  Yuanyuan Song,et al.  In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[114]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[115]  Steven D. Lacey,et al.  Nanocellulose as green dispersant for two-dimensional energy materials , 2015 .

[116]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[117]  Maria Strømme,et al.  Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. , 2015, ACS nano.

[118]  Ziqiang Shao,et al.  Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. , 2014, Nanoscale.

[119]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[120]  Wenshuai Chen,et al.  Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. , 2015, Carbohydrate polymers.

[121]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[122]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .

[123]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[124]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[125]  Paul Gatenholm,et al.  Bacterial Nanocellulose as a Renewable Material for Biomedical Applications , 2010 .

[126]  Tao Cheng,et al.  Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. , 2015, Chemical Society reviews.

[127]  A. Isogai,et al.  Thermal stabilization of TEMPO-oxidized cellulose , 2010 .

[128]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[129]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature materials.

[130]  J. Keskinen,et al.  Pyrolysed cellulose nanofibrils and dandelion pappus in supercapacitor application , 2017, Cellulose.

[131]  Staffan Persson,et al.  Toward a Systems Approach to Understanding Plant Cell Walls , 2004, Science.

[132]  Wadood Y. Hamad,et al.  On the Development and Applications of Cellulosic Nanofibrillar and Nanocrystalline Materials , 2008 .

[133]  Jinxing Huo,et al.  Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. , 2014, Nanoscale.

[134]  Xiaoyan Li,et al.  Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline , 2015 .

[135]  Dingsheng Yuan,et al.  High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose , 2014 .

[136]  G. Lindbergh,et al.  Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries , 2017 .

[137]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[138]  T. Thundat,et al.  Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors , 2016 .

[139]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[140]  Xiaoyan Li,et al.  Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors , 2016 .

[141]  Andreas Walther,et al.  Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. , 2011, Angewandte Chemie.

[142]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[143]  Y. Lai,et al.  High-performance lithium-sulfur batteries with a carbonized bacterial cellulose/TiO2 modified separator , 2017 .

[144]  H. Manuspiya,et al.  An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery , 2015 .

[145]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[146]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[147]  K. Uetani,et al.  Nanofibrillation of wood pulp using a high-speed blender. , 2011, Biomacromolecules.

[148]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[149]  Z. Ma,et al.  A freestanding cellulose nanofibril–reduced graphene oxide–molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density , 2017 .

[150]  Chaodi Xu,et al.  Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries , 2015 .

[151]  Lars Wågberg,et al.  Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose , 2013 .

[152]  Hong‐Jie Peng,et al.  A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. , 2017, Chemical Society reviews.

[153]  Federico Bella,et al.  Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries , 2016 .

[154]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[155]  Qinglin Wu,et al.  Hetero‐Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability , 2015 .

[156]  Feijun Wang,et al.  Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors , 2013 .

[157]  Jinxing Huo,et al.  Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors , 2016 .

[158]  Kentaro Abe,et al.  Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber , 2009 .

[159]  Robin H. A. Ras,et al.  Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. , 2011, ACS nano.

[160]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[161]  Guangyao Xiong,et al.  A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes , 2015 .

[162]  Yi Cui,et al.  Nanostructured paper for flexible energy and electronic devices , 2013 .

[163]  Guang Yang,et al.  Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices , 2014 .

[164]  Seokheun Choi,et al.  Paper-based batteries: a review. , 2014, Biosensors & bioelectronics.

[165]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[166]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[167]  Wenshuai Chen,et al.  Comparative study of aerogels obtained from differently prepared nanocellulose fibers. , 2014, ChemSusChem.

[168]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[169]  M. Karp,et al.  Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. , 2017, ACS applied materials & interfaces.

[170]  Jeong Hoon Kim,et al.  Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries , 2013 .

[171]  Masatoshi Iguchi,et al.  Bacterial cellulose—a masterpiece of nature's arts , 2000 .

[172]  L. Nyholm,et al.  Paper‐Based Energy‐Storage Devices Comprising Carbon Fiber‐Reinforced Polypyrrole‐Cladophora Nanocellulose Composite Electrodes , 2012 .

[173]  Kevin E. Shopsowitz,et al.  Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. , 2011, Angewandte Chemie.

[174]  Guang Yang,et al.  Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes , 2014 .

[175]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[176]  A. Basta,et al.  Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application) , 2004 .

[177]  L. Nyholm,et al.  Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. , 2015, Nanoscale.

[178]  H. Yano,et al.  Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.

[179]  H. Yano,et al.  Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens) , 2010 .

[180]  Harm-Anton Klok,et al.  Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. , 2017, Chemical reviews.

[181]  J. Warzywoda,et al.  Gel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium–sulfur batteries , 2017 .

[182]  Deren Yang,et al.  Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors , 2016 .

[183]  J. Dai,et al.  Highly Conductive Microfiber of Graphene Oxide Templated Carbonization of Nanofibrillated Cellulose , 2014 .

[184]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[185]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[186]  A. N. Nakagaito,et al.  Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites , 2007 .

[187]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[188]  Jie Xu,et al.  Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application , 2016 .

[189]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[190]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[191]  R. Ho,et al.  Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. , 2015, Chemical Society reviews.

[192]  M. Salehi,et al.  Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration , 2016, Cellulose.

[193]  M. MacLachlan,et al.  Functional materials from cellulose-derived liquid-crystal templates. , 2015, Angewandte Chemie.

[194]  Sang‐young Lee,et al.  Functionalized Nanocellulose-Integrated Heterolayered Nanomats toward Smart Battery Separators. , 2016, Nano letters.

[195]  Yi Shi,et al.  Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries , 2015 .

[196]  Xuan Yang,et al.  Efficient Lightweight Supercapacitor with Compression Stability , 2016 .

[197]  Jie Xu,et al.  Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. , 2017, Carbohydrate polymers.

[198]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[199]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[200]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[201]  W. Thielemans,et al.  High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors , 2013 .

[202]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[203]  Tianhe Wang,et al.  Amorphous Fe 2 O 3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries , 2016 .

[204]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[205]  S. Franssila,et al.  Printable and disposable supercapacitor from nanocellulose and carbon nanotubes , 2014, Proceedings of the 5th Electronics System-integration Technology Conference (ESTC).

[206]  Lynn A. Capadona,et al.  A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. , 2007, Nature nanotechnology.

[207]  Faxing Wang,et al.  Latest advances in supercapacitors: from new electrode materials to novel device designs. , 2017, Chemical Society reviews.

[208]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[209]  Farrokh Sharifi,et al.  Paper-based devices for energy applications , 2015 .

[210]  Qinglin Wu,et al.  Heterolayered, one-dimensional nanobuilding block mat batteries. , 2014, Nano letters.

[211]  W. Thielemans,et al.  Surface modification of cellulose nanocrystals. , 2014, Nanoscale.

[212]  K. Edström,et al.  Mesoporous Cladophora cellulose separators for lithium-ion batteries , 2016 .

[213]  Jun Yan,et al.  Nitrogen‐Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose , 2014 .

[214]  L. Nyholm,et al.  Cellulose‐based Supercapacitors: Material and Performance Considerations , 2017 .

[215]  Shuhong Yu,et al.  Macroscopic‐Scale Three‐Dimensional Carbon Nanofiber Architectures for Electrochemical Energy Storage Devices , 2017 .

[216]  Lars Wågberg,et al.  Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. , 2013, Angewandte Chemie.

[217]  Wei Liu,et al.  Nanocellulose-based conductive materials and their emerging applications in energy devices - A review , 2017 .

[218]  L. Berglund,et al.  Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils , 2008 .

[219]  Kevin E. Shopsowitz,et al.  The development of chiral nematic mesoporous materials. , 2014, Accounts of chemical research.

[220]  Zengqian Shi,et al.  Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes , 2015 .

[221]  Zhen-Yu Wu,et al.  Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. , 2016, Accounts of chemical research.

[222]  G. Cui,et al.  Biomass-derived materials for electrochemical energy storages , 2015 .

[223]  L. Nazar,et al.  A Nitrogen and Sulfur Dual‐Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries , 2015, Advanced materials.

[224]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[225]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[226]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[227]  Akira Isogai,et al.  Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials , 2013, Journal of Wood Science.