Augmented conjugate gradient. Application in an iterative process for the solution of scattering problems

We discuss the application of an augmented conjugate gradient to the solution of a sequence of linear systems of the same matrix appearing in an iterative process for the solution of scattering problems. The conjugate gradient method applied to the first system generates a Krylov subspace, then for the following systems, a modified conjugate gradient is applied using orthogonal projections on this subspace to compute an initial guess and modified descent directions leading to a better convergence. The scattering problem is treated via an Exact Controllability formulation and a preconditioned conjugate gradient algorithm is introduced. The set of linear systems to be solved are associated to this preconditioning. The efficiency of the method is tested on different 3D acoustic problems.

[1]  K. Burrage,et al.  On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .

[2]  Christian Rey Développement d'algorithmes parallèles de résolution en calcul non-linéaire de structures hétérogènes : application au cas d'une butée acier élastomère , 1994 .

[3]  C. Farhat,et al.  Extending substructure based iterative solvers to multiple load and repeated analyses , 1994 .

[4]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[5]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[6]  Roland Glowinski,et al.  Solving the Helmholtz Equation At High-Wave Numbers On a Parallel Computer With a Shared Virtual Memory , 1995, Int. J. High Perform. Comput. Appl..

[7]  Frédéric Guyomarc'h,et al.  An Augmented Subspace Conjugate Gradient , 1997 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  C. Bardos,et al.  Variational algorithms for the Helmholtz equation using time evolution and artificial boundaries , 1994 .

[10]  R. Glowinski,et al.  Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.

[11]  Jocelyne Erhel Sparse Matrix Multiplication on Vector Computers , 1990, Int. J. High Speed Comput..

[12]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[13]  Jacques Periaux,et al.  Numerical Simulation of High Frequency Scattering Waves Using Exact Controllability Methods , 1993 .

[14]  GradientJocelyne Erhel,et al.  An augmented subspace Conjugate , 1997 .

[15]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[16]  Jacques Periaux,et al.  Scattering waves using exact controllability methods , 1993 .

[17]  Jacques Periaux,et al.  Exact Controllability to Solve the Helmholtz Equation with Absorbing Boundary Conditions , 1994 .