Range Compression and Waveform Optimization for MIMO Radar: A CramÉr–Rao Bound Based Study

A multi-input multi-output (MIMO) radar system, unlike standard phased-array radar, can transmit via its antennas multiple probing signals that may be correlated or uncorrelated with each other. This waveform diversity offered by MIMO radar enables superior capabilities compared with a standard phased-array radar. One of the common practices in radar has been range compression. We first address the question of ldquoto compress or not to compressrdquo by considering both the Cramer-Rao bound (CRB) and the sufficient statistic for parameter estimation. Next, we consider MIMO radar waveform optimization for parameter estimation for the general case of multiple targets in the presence of spatially colored interference and noise. We optimize the probing signal vector of a MIMO radar system by considering several design criteria, including minimizing the trace, determinant, and the largest eigenvalue of the CRB matrix. We also consider waveform optimization by minimizing the CRB of one of the target angles only or one of the target amplitudes only. Numerical examples are provided to demonstrate the effectiveness of the approaches we consider herein.

[1]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[2]  D. Ramakrishnan,et al.  MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[3]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[4]  Joseph Tabrikian,et al.  Spatially coded signal model for active arrays , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[6]  Jian Li,et al.  Radar imaging via adaptive MIMO techniques , 2006, 2006 14th European Signal Processing Conference.

[7]  Jian Li,et al.  An adaptive filtering approach to spectral estimation and SAR imaging , 1996, IEEE Trans. Signal Process..

[8]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[9]  D.W. Bliss,et al.  Multiple-input multiple-output (MIMO) radar: performance issues , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Alexander M. Haimovich,et al.  Spatial Diversity in Radars—Models and Detection Performance , 2006, IEEE Transactions on Signal Processing.

[12]  Joseph Tabrikian,et al.  Transmission diversity smoothing for multi-target localization [radar/sonar systems] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  Richard Klemm,et al.  Introduction to space-time adaptive processing , 1998 .

[14]  P. Stoica,et al.  MIMO Radar Diversity Means Superiority , 2009 .

[15]  J. Tabrikian,et al.  Barankin Bounds for Target Localization by MIMO Radars , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[16]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[17]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[18]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[19]  Joseph R. Guerci,et al.  Space-Time Adaptive Processing for Radar , 2003 .

[20]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[21]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[22]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[23]  Jian Li,et al.  On Probing Signal Design for MIMO Radar , 2006, ASILOMAR 2006.

[24]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[25]  Jian Li,et al.  On Probing Signal Design For MIMO Radar , 2006, IEEE Transactions on Signal Processing.

[26]  Karsten P. Ulland,et al.  Vii. References , 2022 .

[27]  Stephen Boyd,et al.  MAXDET: Software for Determinant Maximization Problems User's Guide , 1996 .

[28]  F.C. Robey,et al.  MIMO radar theory and experimental results , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[29]  P. Stoica,et al.  Combining Capon and APES for estimation of spectral lines , 2000 .

[30]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1994, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[31]  Edward J. Kelly Finite-Sum Expressions for Signal Detection Probabilities , 1981 .

[32]  Rick S. Blum,et al.  Performance of MIMO radar systems: advantages of angular diversity , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[33]  Jian Li,et al.  On Parameter Identifiability of MIMO Radar , 2007, IEEE Signal Processing Letters.

[34]  Daniel W. Bliss,et al.  Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[35]  D. J. Rabideau,et al.  Ubiquitous MIMO multifunction digital array radar , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[36]  D.W. Bliss,et al.  Waveform Correlation and Optimization Issues for MIMO Radar , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[37]  Jian Li,et al.  Adaptive Techniques for MIMO Radar , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[38]  D. Fuhrmann,et al.  Transmit beamforming for MIMO radar systems using partial signal correlation , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..