An Improved Fixed-Parameter Algorithm for Max-Cut Parameterized by Crossing Number

The Max-Cut problem is known to be NP-hard on general graphs, while it can be solved in polynomial time on planar graphs. In this paper, we present a fixed-parameter tractable algorithm for the problem on “almost” planar graphs: Given an n-vertex graph and its drawing with k crossings, our algorithm runs in time \(O(2^k(n+k)^{3/2} \log (n + k))\). Previously, Dahn, Kriege and Mutzel (IWOCA 2018) obtained an algorithm that, given an n-vertex graph and its 1-planar drawing with k crossings, runs in time \(O(3^k n^{3/2} \log n)\). Our result simultaneously improves the running time and removes the 1-planarity restriction.

[1]  Frauke Liers,et al.  Partitioning planar graphs: a fast combinatorial approach for max-cut , 2012, Comput. Optim. Appl..

[2]  Serge Gaspers,et al.  Separate, Measure and Conquer , 2017, ACM Trans. Algorithms.

[3]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[4]  Klaus Jansen,et al.  On the Complexity of the Maximum Cut Problem , 1994, Nord. J. Comput..

[5]  Luca Trevisan,et al.  Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..

[6]  Saket Saurabh,et al.  Improved fixed parameter tractable algorithms for two "edge" problems: MAXCUT and MAXDAG , 2007, Inf. Process. Lett..

[7]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[8]  Nils M. Kriege,et al.  A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs , 2018, IWOCA.

[9]  Saket Saurabh,et al.  Uniform Kernelization Complexity of Hitting Forbidden Minors , 2015, ICALP.

[10]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[11]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[12]  Rafael Veiga Pocai The Complexity of SIMPLE MAX-CUT on Comparability Graphs , 2016, Electron. Notes Discret. Math..

[13]  Wei-Kuan Shih,et al.  Unifying Maximum Cut and Minimum Cut of a Planar Graph , 1990, IEEE Trans. Computers.

[14]  Jan Vondrák,et al.  Optimization via enumeration: a new algorithm for the Max Cut Problem , 2001, Math. Program..

[15]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[16]  Saket Saurabh,et al.  Max-Cut Above Spanning Tree is Fixed-Parameter Tractable , 2018, CSR.

[17]  Markus Chimani,et al.  Maximum Cut Parameterized by Crossing Number , 2020, J. Graph Algorithms Appl..

[18]  Harold N. Gabow,et al.  An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems , 1983, STOC.

[19]  Venkatesan Guruswami Maximum Cut on Line and Total Graphs , 1999, Discret. Appl. Math..

[20]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[21]  Mark Jones,et al.  Max-Cut Parameterized Above the Edwards-Erdős Bound , 2014, Algorithmica.

[22]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[23]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[24]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).