A global model reduction approach for 3D fatigue crack growth with confined plasticity

Abstract It has been known for decades that fatigue crack propagation in elastic–plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, raw computations of millions of nonlinear fatigue cycles on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems.

[1]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[2]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[3]  Sylvie Pommier,et al.  Incremental model for fatigue crack growth based on a displacement partitioning hypothesis of mode I elastic–plastic displacement fields , 2007 .

[4]  T. Rado The problem of the least area and the problem of Plateau , 1930 .

[5]  A. Combescure,et al.  A mixed augmented Lagrangian‐extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact , 2007 .

[6]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[7]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[8]  Elías Cueto,et al.  On thea priori model reduction: Overview and recent developments , 2006 .

[9]  Karen Paula L. Veroy,et al.  Reduced-basis methods applied to problems in elasticity : analysis and applications , 2003 .

[10]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[11]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[12]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[13]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[14]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[15]  Yalin Wang,et al.  Volumetric Harmonic Map , 2003, Commun. Inf. Syst..

[16]  Marie-Christine Baietto,et al.  A two-scale extended finite element method for modelling 3D crack growth with interfacial contact , 2010 .

[17]  F. Blom Considerations on the spring analogy , 2000 .

[18]  C Bathias,et al.  LA FATIGUE DES MATERIAUX ET DES STRUCTURES , 1980 .

[19]  Anthony T. Patera,et al.  Reduced basis approximation and a posteriori error estimation for stress intensity factors , 2007 .

[20]  Marc Bonnet,et al.  Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture , 1995 .

[21]  O. E. Wheeler Spectrum Loading and Crack Growth , 1972 .

[22]  James C. Newman FASTRAN-2: A fatigue crack growth structural analysis program , 1992 .

[23]  J. Marsden,et al.  Dimensional model reduction in non‐linear finite element dynamics of solids and structures , 2001 .

[24]  James C. Newman,et al.  The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective , 1998 .

[25]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[26]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[27]  M. H. Aliabadi,et al.  THREE-DIMENSIONAL CRACK GROWTH SIMULATION USING BEM , 1994 .

[28]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[29]  Stéphane Roux,et al.  Three dimensional experimental and numerical multiscale analysis of a fatigue crack , 2010 .

[30]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[31]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[32]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[33]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[34]  Johann Rannou,et al.  A local multigrid X‐FEM strategy for 3‐D crack propagation , 2009 .

[35]  Sylvie Pommier,et al.  Variable amplitude fatigue crack growth, experimental results and modeling , 2007 .

[36]  J. Douglas Solution of the problem of Plateau , 1931 .

[37]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[38]  Sylvie Pommier,et al.  Time-derivative equations for fatigue crack growth in metals , 2005 .

[39]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[40]  R. Barsoum Triangular quarter‐point elements as elastic and perfectly‐plastic crack tip elements , 1977 .

[41]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[42]  J. Willenborg,et al.  A Crack Growth Retardation Model Using an Effective Stress Concept , 1971 .

[43]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[44]  F. Chinesta,et al.  An efficient ‘a priori’ model reduction for boundary element models , 2005 .

[45]  I. Babuska,et al.  The generalized finite element method , 2001 .

[46]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[47]  G. Reddien,et al.  On the reduced basis method , 1995 .