Restart particle swarm optimization with velocity modulation: a scalability test

Large scale continuous optimization problems are more relevant in current benchmarks since they are more representative of real-world problems (bioinformatics, data mining, etc.). Unfortunately, the performance of most of the available optimization algorithms deteriorates rapidly as the dimensionality of the search space increases. In particular, particle swarm optimization is a very simple and effective method for continuous optimization. Nevertheless, this algorithm usually suffers from unsuccessful performance on large dimension problems. In this work, we incorporate two new mechanisms into the particle swarm optimization with the aim of enhancing its scalability. First, a velocity modulation method is applied in the movement of particles in order to guide them within the region of interest. Second, a restarting mechanism avoids the early convergence and redirects the particles to promising areas in the search space. Experiments are carried out within the scope of this Special Issue to test scalability. The results obtained show that our proposal is scalable in all functions of the benchmark used, as well as numerically very competitive with regards to other compared optimizers.

[1]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[2]  Shang-Jeng Tsai,et al.  Solving large scale global optimization using improved Particle Swarm Optimizer , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[3]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[4]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[5]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[6]  Enrique Alba,et al.  MALLBA: a software library to design efficient optimisation algorithms , 2007 .

[7]  F. Herrera,et al.  Components and Parameters of DE , Real-coded CHC , and G-CMAES , 2010 .

[8]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[9]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[10]  Yun Shang,et al.  A Note on the Extended Rosenbrock Function , 2006 .

[11]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[12]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[13]  Ajith Abraham,et al.  Inertia-Adaptive Particle Swarm Optimizer for Improved Global Search , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[14]  N. Hansen,et al.  Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup , 2010 .

[15]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[16]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[17]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[18]  Bijaya K. Panigrahi,et al.  On Some Properties of the lbest Topology in Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[19]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[20]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[21]  Javier Apolloni,et al.  Algoritmo Basado en Cúmulos de Partı́culas y Evolución Diferencial para la Resolución de Problemas de Optimización Continua , 2008 .

[22]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[23]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[24]  James N. Knight,et al.  Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.

[25]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[27]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .