CONVERGENCE AND SUPERCONVERGENCE OF A NONCONFORMING FINITE ELEMENT ON ANISOTROPIC MESHES

The main aim of this paper is to study the error estimates of a nonconforming flnite element for general second order problems, in particular, the superconvergence properties under anisotropic meshes. Some extrapolation results on rectangular meshes are also discussed. Finally, numerical results are presented, which coincides with our theoretical analysis perfectly. It is well-known that regular assumption or quasi-uniform assumption (10, 13) of flnite element meshes is a basic condition in the analysis of flnite element approxima- tion both for conventional conforming and nonconforming elements. However, with the advances of the flnite element methods and its applications to other flelds and more complex problems, the above regular or quasi-uniform assumption becomes quite a restriction in practice for some problems in the flnite element methods. For example, the solution may have anisotropic behavior in part of the domain, that is to say, the solution varies signiflcantly only in certain directions. Such prob- lems are frequently encountered in perturbed convection-difiusion-reaction equa- tions where boundary or interior layers appear. In such cases, it is more efiective to use anisotropic meshes with a small mesh size in the direction of the rapid variation of the solution and a larger mesh size in the perpendicular direction. Consider a bounded convex domain › ‰ R 2 . Let Jh be a family of meshes of ›. Denote the diameter of an element K and the diameter of the inscribed circle of K by hK and ‰K, respectively. h = max K2Jh hK. It is assumed in the classical flnite element theory

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Ricardo G. Durán,et al.  Error estimates for 3-d narrow finite elements , 1999, Math. Comput..

[3]  Serge Nicaise,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .

[4]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[5]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[6]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .

[7]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[8]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[9]  Lionel Pereira-Mendoza What Is a Quadrilateral , 1993 .

[10]  Ricardo G. Durán,et al.  Error estimates on anisotropic ℚ1 elements for functions in weighted Sobolev spaces , 2005, Math. Comput..

[11]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[12]  Zhong-Ci Shi,et al.  SUPERCONVERGENCE STUDIES OF QUADRILATERAL NONCONFORMING ROTATED Q1 ELEMENTS , 2006 .

[13]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[14]  Zhongci Shi The F-E-M test for convergence of nonconforming finite elements , 1987 .

[15]  Vít Dolejší,et al.  On the Discrete Friedrichs Inequality for Nonconforming Finite Elements , 1999 .

[16]  N. Shenk,et al.  Uniform error estimates for certain narrow Lagrange finite elements , 1994 .

[17]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  S. Nicaise,et al.  A nonconforming finite element method¶with anisotropic mesh grading¶for the incompressible Navier–Stokes equations¶in domains with edges , 2002 .

[20]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[21]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[22]  S. Nicaise,et al.  A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .

[23]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[24]  S. C. Brenner,et al.  POINCAR´ E-FRIEDRICHS INEQUALITIES FOR PIECEWISE H 1 FUNCTIONS ∗ , 2003 .

[25]  Bo Li,et al.  Superconvergence analysis and error expansion for the Wilson nonconforming finite element , 1994 .

[26]  Dongyang Shi,et al.  Anisotropic interpolations with application to nonconforming elements , 2004 .

[27]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[28]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[29]  Friedrich Stummel,et al.  Basic compactness properties of nonconforming and hybrid finite element spaces , 1980 .

[30]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .

[31]  R. Rannacher Richardson Extrapolation with Finite Elements , 1987 .

[32]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[33]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[34]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[35]  Dongyang Shi,et al.  Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .

[36]  Shipeng Mao,et al.  A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element , 2006 .

[37]  Michèle Vanmaele,et al.  Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements , 1995 .

[38]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .