Large-database cross-verification and validation of tokamak transport models using baselines for comparison

State-of-the-art 1D transport solvers ASTRA and TRANSP are verified, then validated across a large database of semi-randomly selected, time-dependent DIII-D discharges. Various empirical models are provided as baselines to contextualize the validation figures of merit using statistical hypothesis tests. For predicting plasma temperature profiles, no statistically significant advantage is found for the ASTRA and TRANSP simulators over a baseline empirical (two-parameter) model. For predicting stored energy, a significant advantage is found for the simulators over a baseline empirical model based on confinement time scaling. Uncertainty in the results due to diagnostic and profile fitting uncertainties is approximated and determined to be insignificant due in part to the large quantity of discharges employed in the study. Advantages are discussed for validation methodologies like this one that employ (1) large databases and (2) baselines for comparison that are specific to the intended use-case of the model.

[1]  T. Petrie,et al.  The physics basis to integrate an MHD stable, high-power hybrid scenario to a cool divertor for steady-state reactor operation , 2023, Nuclear Fusion.

[2]  H. Lütjens,et al.  Verification and validation of linear gyrokinetic and kinetic-MHD simulations for internal kink instability in DIII-D tokamak , 2021, Nuclear Fusion.

[3]  E. Kolemen,et al.  CAKE: Consistent Automatic Kinetic Equilibrium reconstruction , 2021 .

[4]  E. Kolemen,et al.  Data-driven profile prediction for DIII-D , 2021 .

[5]  M. Greenwald,et al.  Predictions of core plasma performance for the SPARC tokamak , 2020, Journal of Plasma Physics.

[6]  Faa Federico Felici,et al.  Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model , 2018, Nuclear Fusion.

[7]  Faa Federico Felici,et al.  RABBIT: Real-time simulation of the NBI fast-ion distribution , 2018, Nuclear Fusion.

[8]  P. Stangeby Basic physical processes and reduced models for plasma detachment , 2018 .

[9]  Orso Meneghini,et al.  Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT , 2018 .

[10]  JET Contributors,et al.  Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz , 2017, 1708.01224.

[11]  Chris Holland,et al.  Validation metrics for turbulent plasma transport , 2016 .

[12]  A. D. Turnbull,et al.  Integrated modeling applications for tokamak experiments with OMFIT , 2015 .

[13]  A. Kritz,et al.  Validation of transport models using additive flux minimization technique , 2013 .

[14]  G. Pautasso,et al.  Dynamical coupling between magnetic equilibrium and transport in tokamak scenario modelling, with application to current ramps , 2013 .

[15]  Arnold H. Kritz,et al.  Physics basis of Multi-Mode anomalous transport module , 2013 .

[16]  P. B. Snyder,et al.  The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations , 2012 .

[17]  F. Felici,et al.  Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control , 2012 .

[18]  R. E. Waltz,et al.  ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model , 2011 .

[19]  J. Kinsey,et al.  Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges , 2010 .

[20]  M. Greenwald Verification and validation for magnetic fusiona) , 2010 .

[21]  Jeff M. Candy,et al.  Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .

[22]  G. V. Pereverzev,et al.  Stable numeric scheme for diffusion equation with a stiff transport , 2008, Comput. Phys. Commun..

[23]  Stephen C. Jardin,et al.  On 1D diffusion problems with a gradient-dependent diffusion coefficient , 2008, J. Comput. Phys..

[24]  J. Candy,et al.  Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics , 2008 .

[25]  R. E. Waltz,et al.  The first transport code simulations using the trapped gyro-Landau-fluid model , 2008 .

[26]  D. P. Stotler,et al.  Validation in fusion research: Towards guidelines and best practices , 2008, 0801.2787.

[27]  D. A. Humphreys,et al.  Towards model-based current profile control at DIII-D , 2007 .

[28]  L. Lao,et al.  MHD Equilibrium Reconstruction in the DIII-D Tokamak , 2005 .

[29]  R. E. Waltz,et al.  Simulations of internal transport barrier formation in tokamak discharges using the GLF23 transport model , 2002 .

[30]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[31]  G. Bateman,et al.  Comparison of low confinement mode transport simulations using the mixed Bohm/gyro-Bohm and the Multi-Mode-95 transport model , 2001 .

[32]  G. Bateman,et al.  Comparison of high-mode predictive simulations using Mixed Bohm/gyro-Bohm and Multi-Mode (MMM95) transport models , 2001 .

[33]  G. M. D. Hogeweij,et al.  The International Multi-Tokamak Profile Database , 2000 .

[34]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[35]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[36]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[37]  J. Callen,et al.  Global energy confinement degradation due to macroscopic phenomena in tokamaks , 1990 .

[38]  W. Houlberg,et al.  Transport Analysis of Ignited and Current-Driven ITER Designs , 1989 .

[39]  B. Coppi Profile consistency: Global and nonlinear transport , 1988 .

[40]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[41]  R. Goldston,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[42]  B. Kadomtsev Disruptive instability in tokamaks , 1975 .

[43]  J. Kinsey,et al.  Verification of a quasi-linear model for gyrokinetic turbulent transport , 2021, Nuclear Fusion.

[44]  Frederic Imbeaux,et al.  Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz , 2015 .

[45]  Alexander Pletzer,et al.  Simulation of anomalous transport in tokamaks using the FACETS code , 2011, Comput. Phys. Commun..

[46]  ITER Physics Basis Editors,et al.  Chapter 2: Plasma confinement and transport , 1999 .

[47]  G. V. Pereverzew,et al.  ASTRA. An Automatic System for Transport Analysis in a Tokamak. , 1991 .

[48]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .

[49]  R. Sagdeev,et al.  Neoclassical theory of diffusion , 1973 .