Raman study of structural disorder in ZnO nanopowders

Raman scattering spectroscopy has been used for the characterization of zinc oxide nanoparticles obtained by mechanical activation in a high-energy vibro-mill and planetary ball mill. Raman modes observed in spectra of nonactivated sample are assigned to Raman spectra of the ZnO monocrystal, while the spectra of mechanically activated samples point out to the structural and stoichiometric changes, depending on the milling time and the choice of equipment. Observed redshift and peak broadening of the E2high and E1 (LO) first-order Raman modes are attributed to increased disorder induced by mechanical milling, followed by the effects of phonon confinement due to correlation length decrease. The additional modes identified in Raman spectra of activated ZnO samples are related to the surface optical phonon modes, due to the intrinsic surface defects and presence of ZrO2as extrinsic defects introduced by milling in zirconia vials. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Gaojie Xu,et al.  Size dependence of electron-phonon coupling in ZnO nanowires , 2004 .

[2]  M. Amjoud,et al.  Structural Characterization of Ge Microcrystals in GexC1-x Films , 1992 .

[3]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[4]  Michael J. Callahan,et al.  Temperature dependence of Raman scattering in ZnO , 2007 .

[5]  Sheng-Yao Hu,et al.  Improved optical and structural properties of ZnO thin films by rapid thermal annealing , 2007 .

[6]  R. D. Robinson,et al.  SIZE-DEPENDENT PROPERTIES OF CEO2-Y NANOPARTICLES STUDIED BY RAMAN SCATTERING , 2001 .

[7]  Yadong Li,et al.  Photoluminescence of tetragonal ZrO(2) nanoparticles synthesized by microwave irradiation. , 2002, Inorganic chemistry.

[8]  Z. Dohcevic-Mitrovic,et al.  Use of Phonon Confinement Model in Simulation οf Raman Spectra of Nanostructured Materials , 2009 .

[9]  Dilip K. Singh,et al.  Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling , 2007 .

[10]  P. Bhattacharya,et al.  Raman Scattering Studies in Dilute Magnetic Semiconductor Zn(1-x)Co(x)O , 2006 .

[11]  G. Lo,et al.  Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO , 2009 .

[12]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[13]  Mahuya Chakrabarti,et al.  Role of defects in tailoring structural, electrical and optical properties of ZnO , 2009 .

[14]  A. Arora,et al.  Raman spectroscopy of optical phonon confinement in nanostructured materials , 2007 .

[15]  Hans L. Hartnagel,et al.  Fröhlich modes in porous III-V semiconductors , 2001 .

[16]  D. Pavlidis,et al.  Fröhlich modes in GaN columnar nanostructures , 2001 .

[17]  K. Vojisavljević,et al.  Modification of the Structural and Optical Properties of Commercial ZnO Powder by Mechanical Activation , 2006 .

[18]  A. Balandin,et al.  Interface and confined optical phonons in wurtzite nanocrystals , 2004, cond-mat/0405681.

[19]  Angel Rubio,et al.  Pressure dependence of the lattice dynamics of ZnO: An ab initio approach , 2004 .

[20]  W. Lu,et al.  Raman study for E2 phonon of ZnO in Zn1-xMnxO nanoparticles , 2005 .

[21]  Toshio Suzuki,et al.  RAMAN SCATTERING AND LATTICE DEFECTS IN NANOCRYSTALLINE CEO2 THIN FILMS , 2002 .

[22]  Zexiang Shen,et al.  Temperature dependence of the raman scattering spectra of Zn/ZnO nanoparticles , 1998 .

[23]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[24]  Manuel Cardona,et al.  Resonant Raman scattering in ZnO , 1977 .

[25]  Alexander A. Balandin,et al.  Micro-Raman investigation of optical phonons in ZnO nanocrystals , 2005 .

[26]  R. Kling,et al.  Influences of biaxial strains on the vibrational and exciton energies in ZnO , 2004 .

[27]  A. Hewat Lattice dynamics of ZnO and BeO , 1970 .

[28]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[29]  S. Chua,et al.  The influence of nitrogen plasma treatment on the lattice vibrational properties of hydrothermally grown ZnO nanorods , 2008 .

[30]  Zhong Lin Wang Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing , 2007 .

[31]  R. Choudhary,et al.  Phonon assisted photoluminescence and surface optical mode of Zn embedded ZnO nanostructure , 2009 .

[32]  H. Zeng,et al.  Surface optical phonon Raman scattering in Zn∕ZnO core-shell structured nanoparticles , 2006 .

[33]  S. Lau,et al.  Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc , 2001 .

[34]  Wen-Feng Hsieh,et al.  Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots , 2006 .

[35]  G. Irmer Raman scattering of nanoporous semiconductors , 2007 .

[36]  G. Siu,et al.  Variation of fundamental and higher-order Raman spectra of ZrO 2 nanograins with annealing temperature , 1999 .

[37]  G. Branković,et al.  Structural characterization of mechanically milled ZnO: influence of zirconia milling media , 2008 .

[38]  R. Callender,et al.  Dispersion of Raman Cross Section in CdS and ZnO over a Wide Energy Range , 1973 .