Topological systems as a framework for institutions
暂无分享,去创建一个
Austin Melton | Sergey A. Solovyov | Jeffrey T. Denniston | Stephen Ernest Rodabaugh | A. Melton | S. E. Rodabaugh | S. Solovyov
[1] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[2] Law Fw. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .
[3] Bernhard Banaschewski,et al. Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.
[4] H. Hogbe-Nlend. Bornologies and functional analysis : introductory course on the theory of duality topology-bornology and its use in functional analysis , 1977 .
[5] Joseph A. Goguen,et al. Introducing Institutions , 1983, Logic of Programs.
[6] Brian H. Mayoh,et al. Galleries and Institutions , 1985 .
[7] Joseph A. Goguen,et al. A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.
[8] S. Vickers. Topology via Logic , 1989 .
[9] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[10] Antonino Salibra,et al. A Soft Stairway to Institutions , 1991, COMPASS/ADT.
[11] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[12] Steven J. Vickers,et al. Geometric Logic in Computer Science , 1993, Theory and Formal Methods.
[13] SernadasyCristina SernadaszJos,et al. A Topological View on Institutions , 1994 .
[14] Cristina Sernadas,et al. A Theory-based Typological Notion of Institutions , 1994, COMPASS/ADT.
[15] Yves Diers. Categories of algebraic sets , 1996, Appl. Categorical Struct..
[16] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[17] Yves Diers. Affine algebraic sets relative to an algebraic theory , 1999 .
[18] Alexander P. Sostak,et al. Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .
[19] Stephen E. Rodabaugh,et al. Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .
[20] Diederik Aerts,et al. State Property Systems and Closure Spaces: A Study of Categorical Equivalence , 1999 .
[21] Stephen E. Rodabaugh,et al. Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .
[22] Hans-Dieter Ehrich,et al. Specifying communication in distributed information systems , 2000, Acta Informatica.
[23] Razvan Diaconescu. Grothendieck Institutions , 2002, Appl. Categorical Struct..
[24] Diederik Aerts,et al. On the Amnestic Modification of the Category of State Property Systems , 2002, Appl. Categorical Struct..
[25] Y. Diers. Topological geometrical categories , 2002 .
[26] Manuel Ojeda-Aciego,et al. Set functors, L-fuzzy set categories, and generalized terms , 2002 .
[27] Grigore Rosu,et al. Institution Morphisms , 2013, Formal Aspects of Computing.
[28] Manuel Ojeda-Aciego,et al. Similarities between powersets of terms , 2004, Fuzzy Sets Syst..
[29] Cristina Sernadas,et al. Probabilistic and quantum institutions revisited , 2006 .
[30] Cristina Sernadas,et al. Quantum Institutions , 2006, Essays Dedicated to Joseph A. Goguen.
[31] Manuel Ojeda-Aciego,et al. Powersets of terms and composite monads , 2007, Fuzzy Sets Syst..
[32] R. Diaconescu. Institution-independent model theory , 2008 .
[33] Cosimo Guido,et al. Fuzzy points and attachment , 2010, Fuzzy Sets Syst..
[34] Alexander Katovsky,et al. Category Theory , 2010, Arch. Formal Proofs.
[35] Sergejs Solovjovs. Categorically-algebraic topology , 2010 .
[36] 由希 辻. Representation , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[37] A. Šostaks,et al. TOWARDS THE THEORY OF L-BORNOLOGICAL SPACES , 2011 .
[38] Austin Melton,et al. Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..
[39] Patrik Eklund,et al. Adding fuzziness to terms and powerobjects using a monadic approach , 2012, Fuzzy Sets Syst..
[40] Sergey A. Solovyov,et al. Categorical foundations of variety-based topology and topological systems , 2012, Fuzzy Sets Syst..
[41] Sergey A. Solovyov,et al. Categorically algebraic topology versus universal topology , 2013, Fuzzy Sets Syst..
[42] Jan Paseka,et al. On the category of lattice-valued bornological vector spaces , 2014 .
[43] Patrik Eklund,et al. Fuzzy terms , 2014, Fuzzy Sets Syst..
[44] S. Solovyov. Functorial semantics of topological theories , 2015 .
[45] Austin Melton,et al. Lattice-valued preordered sets as lattice-valued topological systems , 2015, Fuzzy Sets Syst..
[46] Jan Paseka,et al. Lattice-valued bornological systems , 2015, Fuzzy Sets Syst..