Log-concave and spherical models in isoperimetry

Abstract. We derive several functional forms of isoperimetric inequalities, in the case of concave isoperimetric profile. In particular, we answer the question of a canonical and sharp functional form of the Lévy—Schmidt theorem on spheres. We use these results to derive a comparison theorem for product measures: the isoperimetric function of $ \mu _1 \otimes\cdots\otimes \mu_n $ is bounded from below in terms of the isoperimetric functions of $ \mu_1,\ldots,\mu_n $. We apply this to measures with finite dimensional isoperimetric behaviors. All the previous estimates can be improved when uniform enlargement is considered.

[1]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[2]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[3]  S. Bobkov An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .

[4]  Sergey G. Bobkov,et al.  A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .

[5]  Wendell H. Fleming,et al.  Normal and Integral Currents , 1960 .

[6]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[7]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[8]  F. Barthe Extremal Properties of Central Half-Spaces for Product Measures , 2001 .

[9]  C. Houdré,et al.  Isoperimetric constants for product probability measures , 1997 .

[10]  Sergey G. Bobkov,et al.  Extremal properties of half-spaces for log-concave distributions , 1996 .

[11]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[12]  Béla Bollobás,et al.  Edge-isoperimetric inequalities in the grid , 1991, Comb..

[13]  Christian Houdré,et al.  Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .

[14]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[15]  B. Maurey,et al.  Institute for Mathematical Physics Some Remarks on Isoperimetry of Gaussian Type Some Remarks on Isoperimetry of Gaussian Type , 2022 .

[16]  S. Bobkov Isoperimetric problem for uniform enlargement , 1997 .

[17]  O. Rothaus Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .