Log-concave and spherical models in isoperimetry
暂无分享,去创建一个
[1] E. Schmidt. Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .
[2] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[3] S. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .
[4] Sergey G. Bobkov,et al. A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .
[5] Wendell H. Fleming,et al. Normal and Integral Currents , 1960 .
[6] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[7] S. Bobkov. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .
[8] F. Barthe. Extremal Properties of Central Half-Spaces for Product Measures , 2001 .
[9] C. Houdré,et al. Isoperimetric constants for product probability measures , 1997 .
[10] Sergey G. Bobkov,et al. Extremal properties of half-spaces for log-concave distributions , 1996 .
[11] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[12] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[13] Christian Houdré,et al. Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .
[14] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[15] B. Maurey,et al. Institute for Mathematical Physics Some Remarks on Isoperimetry of Gaussian Type Some Remarks on Isoperimetry of Gaussian Type , 2022 .
[16] S. Bobkov. Isoperimetric problem for uniform enlargement , 1997 .
[17] O. Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .