More on an Erdős–Szekeres-Type Problem for Interior Points

An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k≥1, let g(k) be the smallest integer such that every planar point set in general position with at least g(k) interior points has a convex subset of points with exactly k interior points of P. In this article, we prove that g(3)=9.

[1]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[2]  Kiyoshi Hosono,et al.  Constructions from empty polygons , 2004, Period. Math. Hung..

[3]  Pavel Valtr A Sufficient Condition for the Existence of Large Empty Convex Polygons , 2002, Discret. Comput. Geom..

[4]  Thomas Fevens A Note on Point Subsets with a Specified Number of Interior Points , 2002, JCDCG.

[5]  David Avis,et al.  On the existence of a point subset with a specified number of interior points , 2001, Discret. Math..

[6]  David Avis,et al.  On the Existence of a Point Subset with 4 or 5 Interior Points , 1998, JCDCG.

[7]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[8]  Esther E. Klein,et al.  On some extremum problems in elementary geometry , 2006 .

[9]  János Pach,et al.  A modular version of the Erdõs-Szekeres theorem , 2001 .

[10]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[11]  János Pach,et al.  A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..

[12]  G. Tóth Erdős-Szekeres-type theorems for segments and non-crossing convex sets by János Pach , 1998 .

[13]  Хианглин Вей,et al.  О плоских точечных подмножествах с заданным числом внутренних точек@@@More on Planar Point Subsets with a Specified Number of Interior Points , 2008 .

[14]  W. Bonnice,et al.  On Convex Polygons Determined by a Finite Planar Set , 1974 .

[15]  Kiyoshi Hosono On the existence of a convex point subset containing one triangle in the plane , 2005, Discret. Math..

[16]  János Pach,et al.  Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .

[17]  Masatsugu Urabe,et al.  On the Existence of a Convex Polygon with a Specified Number of Interior Points , 2003 .