More on an Erdős–Szekeres-Type Problem for Interior Points
暂无分享,去创建一个
[1] János Pach,et al. Research problems in discrete geometry , 2005 .
[2] Kiyoshi Hosono,et al. Constructions from empty polygons , 2004, Period. Math. Hung..
[3] Pavel Valtr. A Sufficient Condition for the Existence of Large Empty Convex Polygons , 2002, Discret. Comput. Geom..
[4] Thomas Fevens. A Note on Point Subsets with a Specified Number of Interior Points , 2002, JCDCG.
[5] David Avis,et al. On the existence of a point subset with a specified number of interior points , 2001, Discret. Math..
[6] David Avis,et al. On the Existence of a Point Subset with 4 or 5 Interior Points , 1998, JCDCG.
[7] V. Soltan,et al. The Erdos-Szekeres problem on points in convex position – a survey , 2000 .
[8] Esther E. Klein,et al. On some extremum problems in elementary geometry , 2006 .
[9] János Pach,et al. A modular version of the Erdõs-Szekeres theorem , 2001 .
[10] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[11] János Pach,et al. A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..
[12] G. Tóth. Erdős-Szekeres-type theorems for segments and non-crossing convex sets by János Pach , 1998 .
[13] Хианглин Вей,et al. О плоских точечных подмножествах с заданным числом внутренних точек@@@More on Planar Point Subsets with a Specified Number of Interior Points , 2008 .
[14] W. Bonnice,et al. On Convex Polygons Determined by a Finite Planar Set , 1974 .
[15] Kiyoshi Hosono. On the existence of a convex point subset containing one triangle in the plane , 2005, Discret. Math..
[16] János Pach,et al. Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .
[17] Masatsugu Urabe,et al. On the Existence of a Convex Polygon with a Specified Number of Interior Points , 2003 .