Theoretical Analysis of Different Classifiers under Reduction Rough Data Set: A Brief Proposal

Rough set plays vital role to overcome the complexities, vagueness, uncertainty, imprecision, and incomplete data during features analysis. Classification is tested on certain dataset that maintain an exact class and review process where key attributes decide the class positions. To assess efficient and automated learning, algorithms are used over training datasets. Generally, classification is supervised learning whereas clustering is unsupervised. Classifications under mathematical models deal with mining rules and machine learning. The Objective of this work is to establish a strong theoretical and manual analysis among three popular classifier namely K-nearest neighbor K-NN, Naive Bayes and Apriori algorithm. Hybridization with rough sets among these three classifiers enables enable to address larger datasets. Performances of three classifiers have tested in absence and presence of rough sets. This work is in the phase of implementation for DNA Deoxyribonucleic Acid datasets and it will design automated system to assess classifier under machine learning environment.

[1]  Andrew W. Moore,et al.  New Algorithms for Efficient High-Dimensional Nonparametric Classification , 2006, J. Mach. Learn. Res..

[2]  Joachim Denzler,et al.  A Comparison of Nearest Neighbor Search Algorithms for Generic Object Recognition , 2006, ACIVS.

[3]  William R. Pearson,et al.  Adjusting scoring matrices to correct overextended alignments , 2013, Bioinform..

[4]  E. Sackinger,et al.  Neural-Network and k-Nearest-neighbor Classifiers , 1991 .

[5]  Nell Sedransk,et al.  Improved Normalization of Systematic Biases Affecting Ion Current Measurements in Label-free Proteomics Data* , 2014, Molecular & Cellular Proteomics.

[6]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[7]  Shigehiko Kanaya,et al.  Systems Biology in the Context of Big Data and Networks , 2014, BioMed research international.

[8]  Da Ruan,et al.  Probabilistic model criteria with decision-theoretic rough sets , 2011, Inf. Sci..

[9]  Kate Smith-Miles,et al.  A New Approach of Eliminating Redundant Association Rules , 2004, DEXA.

[10]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[11]  Dun Liu,et al.  A Multiple-category Classification Approach with Decision-theoretic Rough Sets , 2012, Fundam. Informaticae.

[12]  Gerhard Goos,et al.  Computer Science Today: Recent Trends and Developments , 1995 .

[13]  S. Kannan,et al.  Association Rule Pruning based on Interestingness Measures with Clustering , 2009, ArXiv.

[14]  Stan Z. Li,et al.  Performance Evaluation of the Nearest Feature Line Method in Image Classification and Retrieval , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Nilanjan Dey,et al.  Unmanned aerial system for post disaster identification , 2014, International Conference on Circuits, Communication, Control and Computing.

[16]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[17]  Ajith Abraham,et al.  A new weighted rough set framework based classification for Egyptian NeoNatal Jaundice , 2012, Appl. Soft Comput..

[18]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[19]  Sanjeev Rao,et al.  Implementing Improved Algorithm Over APRIORI Data Mining Association Rule Algorithm , 2012 .

[20]  Bing Zhou A New Formulation of Multi-category Decision-Theoretic Rough Sets , 2011, RSKT.

[21]  Manoj Kumar Tiwari,et al.  Enhancement of Mahalanobis-Taguchi System via Rough Sets based Feature Selection , 2014, Expert Syst. Appl..

[22]  Min Chen,et al.  Rough Cluster Quality Index Based on Decision Theory , 2009, IEEE Transactions on Knowledge and Data Engineering.

[23]  Richard Jensen,et al.  Unsupervised fuzzy-rough set-based dimensionality reduction , 2013, Inf. Sci..

[24]  Nilanjan Dey,et al.  Highly Secured Multilayered Motion Vector Watermarking , 2014, AMLTA.

[25]  Mohammad Ibrahim Khan,et al.  Performance evaluation of Warshall algorithm and dynamic programming for Markov chain in local sequence alignment , 2013, Interdisciplinary Sciences: Computational Life Sciences.

[26]  Jiye Liang,et al.  Measures for evaluating the decision performance of a decision table in rough set theory , 2008, Inf. Sci..

[27]  Debi Prasanna Acharjya,et al.  Algebraic Properties of Rough Set on Two Universal Sets based on Multigranulation , 2014, Int. J. Rough Sets Data Anal..

[28]  Mohammad Ibrahim Khan,et al.  MSuPDA: A Memory Efficient Algorithm for Sequence Alignment , 2014, Interdisciplinary Sciences: Computational Life Sciences.

[29]  Nan Zhang,et al.  Hierarchical rough decision theoretic framework for text classification , 2010, 9th IEEE International Conference on Cognitive Informatics (ICCI'10).

[30]  Min Chen,et al.  Rough Multi-category Decision Theoretic Framework , 2008, RSKT.

[31]  Mark J. P. Chaisson,et al.  Resolving the complexity of the human genome using single-molecule sequencing , 2014, Nature.

[32]  Zhang Yingchun,et al.  Study on Application of Attributive Reduction Based on Rough Sets in Data Mining , 2013 .

[33]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[34]  Zhou Xianzhong,et al.  Two decades'research on decision-theoretic rough sets , 2010, 9th IEEE International Conference on Cognitive Informatics (ICCI'10).

[35]  Yang Li,et al.  Feature selection for transient stability assessment based on kernelized fuzzy rough sets and memetic algorithm , 2018, 1808.08790.

[36]  Nilanjan Dey,et al.  Image mining framework and techniques: a review , 2015 .

[37]  Chris Cornelis,et al.  Fuzzy-rough nearest neighbour classification and prediction , 2011, Theor. Comput. Sci..

[38]  Gao Wei Information filtering model based on decision-theoretic rough set theory , 2007 .

[39]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[40]  Guoyin Wang,et al.  An automatic method to determine the number of clusters using decision-theoretic rough set , 2014, Int. J. Approx. Reason..

[41]  Hany Mahgoub,et al.  Mining Association Rules from Unstructured Documents , 2008 .

[42]  Harry Shum,et al.  Query Dependent Ranking Using K-nearest Neighbor * , 2022 .

[43]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[44]  M. Singh,et al.  Comparison of a Time Efficient Modified K-mean Algorithm with K-Mean and K-Medoid Algorithm , 2012, 2012 International Conference on Communication Systems and Network Technologies.

[45]  Nilanjan Dey,et al.  Rough Set Based Ad Hoc Network: A Review , 2014, Int. J. Serv. Sci. Manag. Eng. Technol..

[46]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[47]  Md. Sarwar Kamal,et al.  Chapman–Kolmogorov equations for global PPIs with Discriminant-EM , 2014 .

[48]  Yiyu Yao,et al.  A Note on Attribute Reduction in the Decision-Theoretic Rough Set Model , 2008, RSCTC.

[49]  Nilanjan Dey,et al.  Image Segmentation Using Rough Set Theory: A Review , 2014, Int. J. Rough Sets Data Anal..

[50]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[51]  佘堃,et al.  Mining Maximal Frequent Item Sets with Improved Algorithm of FPMAX , 2013 .

[52]  Shusaku Tsumoto,et al.  Rough representation of a region of interest in medical images , 2005, Int. J. Approx. Reason..

[53]  Luca Cardelli,et al.  Comparing Object Encodings , 1997, TACS.

[54]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[55]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[56]  Luis Gravano,et al.  The Stanford Digital Library metadata architecture , 1997, International Journal on Digital Libraries.

[57]  Sonia Farhana Nimmy,et al.  Next generation sequencing under de novo genome assembly , 2015 .

[58]  Hong Yu,et al.  Autonomous Knowledge-Oriented Clustering Using Decision-Theoretic Rough Set Theory , 2010, RSKT.

[59]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[60]  Sotiris B. Kotsiantis,et al.  Machine learning: a review of classification and combining techniques , 2006, Artificial Intelligence Review.