Mass detection with a nonlinear nanomechanical resonator.

Nanomechanical resonators having small mass, high resonance frequency, and low damping rate are widely employed as mass detectors. We study the performance of such a detector when the resonator is driven into a region of nonlinear oscillations. We predict theoretically that in this region the system acts as a phase-sensitive mechanical amplifier. This behavior can be exploited to achieve noise squeezing in the output signal when homodyne detection is employed for readout. We show that mass sensitivity of the device in this region may exceed the upper bound imposed by thermomechanical noise upon the sensitivity when operating in the linear region. On the other hand, we show that the high mass sensitivity is accompanied by a slowing down of the response of the system to a change in the mass.