Resonance Tongues in Hill's Equations: A Geometric Approach

Abstract The geometry of resonance tongues is considered in, mainly reversible, versions of Hill's equation, close to the classical Mathieu case. Hill's map assigns to each value of the multiparameter the corresponding Poincare matrix. By an averaging method, the geometry of Hill's map locally can be understood in terms of cuspoid Whitney singularities. This adds robustness to the result. The algorithmic nature of the averaging method enables a pull-back to the resonance tongues of the original system.

[1]  Theodor Bröcker,et al.  Differentiable Germs and Catastrophes , 1975 .

[2]  H. Hochstadt Differential Equations: A Modern Approach , 1964 .

[3]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[4]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[5]  Vladimir I. Arnold,et al.  Remarks on the perturbation theory for problems of Mathieu type , 1983 .

[6]  Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems , 1998 .

[7]  W. Magnus,et al.  Hill's equation , 1966 .

[8]  Mark Levi,et al.  Geometrical aspects of stability theory for Hill's equations , 1995 .

[9]  Balth van der Pol Jun. Doct.Sc. II. On the stability of the solutions of Mathieu's equation , 1928 .

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  Hendrik Broer,et al.  A reversible bifurcation analysis of the inverted pendulum , 1998 .

[12]  Gert Vegter,et al.  Resonances in a spring-pendulum: algorithms for equivariant singularity theory , 1998 .

[13]  高橋 利衛,et al.  〔47〕非線型振動論 : 〔Nonlinear Vibrations in Mechanical and Electrical Systems, J.J.Stoker, Interscience Pub.N.Y., 1950,本文264ページ, 5$〕(1.應用力學および機械力學) , 1951 .

[14]  Carles Simó,et al.  Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena , 1998 .

[15]  L. Galgani,et al.  Formal integrals for an autonomous Hamiltonian system near an equilibrium point , 1978 .

[16]  Gert Vegter,et al.  Bifurcational Aspects of Parametric Resonance , 1992 .

[17]  Instability intervals of Hill's equation , 1964 .

[18]  Gert Vegter,et al.  The inverted pendulum : A singularity theory approach , 1999 .

[19]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[20]  J. Hale Oscillations in Nonlinear Systems , 1963 .

[21]  Marek Rychlik Renormalization of cocycles and linear ODE with almost-periodic coefficients , 1992 .